0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Forkhead box O3 attenuates osteoarthritis by suppressing ferroptosis through inactivation of NF-κB/MAPK signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ferroptosis is a nonapoptotic cell death process that is characterized by lipid peroxidation and intracellular iron accumulation. As osteoarthritis (OA) progresses, inflammation or iron overload induces ferroptosis of chondrocytes. However, the genes that play a vital role in this process are still poorly studied.

          Methods

          Ferroptosis was elicited in the ATDC5 chondrocyte cell line and primary chondrocytes by administration of the proinflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α, which play key roles in OA. The effect of FOXO3 expression on apoptosis, extracellular matrix (ECM) metabolism, and ferroptosis in ATDC5 cells and primary chondrocytes was verified by western blot, Immunohistochemistry (IMHC), immunofluorescence (IF) and measuring Malondialdehyde (MDA) and Glutathione (GSH) levels. The signal cascades that modulated FOXO3-mediated ferroptosis were identified by using chemical agonists/antagonists and lentivirus. In vivo experiments were performed following destabilization of medial meniscus surgery on 8-week-old C57BL/6 mice and included micro-computed tomography measurements.

          Results

          In vitro administration of IL-1β and TNF-α, to ATDC5 cells or primary chondrocytes induced ferroptosis. In addition, the ferroptosis agonist, erastin, and the ferroptosis inhibitor, ferrostatin-1, downregulated or upregulated the protein expression of forkhead box O3 (FOXO3), respectively. This, suggested, for the first time, that FOXO3 may regulate ferroptosis in articular cartilage. Our results further suggested that FOXO3 regulated ECM metabolism via the ferroptosis mechanism in ATDC5 cells and primary chondrocytes. Moreover, a role for the NF-κB/mitogen-activated protein kinase (MAPK) signaling cascade in regulating FOXO3 and ferroptosis was demonstrated. In vivo experiments confirmed the rescue effect of intra-articular injection of a FOXO3-overexpressing lentivirus against erastin-aggravated OA.

          Conclusions

          The results of our study show that the activation of ferroptosis promotes chondrocyte death and disrupts the ECM both in vivo and in vitro. In addition, FOXO3 can reduce OA progression by inhibiting ferroptosis through the NF-κB/MAPK signaling pathway.

          The Translational potential of this article

          This study highlights the important role of chondrocyte ferroptosis regulated by FOXO3 through the NF-κB/MAPK signaling in the progression of OA. The inhibition of chondrocyte ferroptosis by activating FOXO3 is expected to be a new target for the treatment of OA.

          Graphical abstract

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse.

            To evaluate anterior cruciate ligament transection (ACLT) and destabilization of the medial meniscus (DMM) surgical instability models of osteoarthritis (OA) in the 129/SvEv mouse knee joint. Micro-surgical techniques were used to perform ACLT or DMM under direct visualization. Histological scoring was performed on multiple sections to assess cartilage damage across the entire joint. The ACLT model gave severe OA, chondrogenesis of the joint capsule and, in some cases, severe subchondral erosion of the posterior tibial plateau. Surgical DMM was less invasive than the ACLT procedure and resulted in lesions primarily on the central weight-bearing region of the medial tibial plateau and medial femoral condyles. Lesions in the DMM model progressed from mild-to-moderate OA at 4 weeks, to moderate-to-severe OA at 8 weeks post-surgery. Destruction of the subchondral bone was never observed in the DMM model. ACLT is not recommended in the mouse due to the high surgical proficiency required and the development of severe OA that may involve subchondral bone erosion. The severity and location of lesions following DMM are consistent with lesions observed in aged spontaneous mouse models of OA. The DMM model has sufficient sensitivity to show disease modification, as observed with the ADAMTS-5 knock out (KO) mouse. The DMM model should be a first choice to challenge mice with gene deletions of potential targets in OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation

              Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. Recently, the induction of autophagy has been suggested during ferroptosis. However, this relationship between autophagy and ferroptosis is still controversial and the autophagy-inducing mediator remains unknown. In this study, we confirmed that autophagy is indeed induced by the ferroptosis inducer erastin. Furthermore, we show that autophagy leads to iron-dependent ferroptosis by degradation of ferritin and induction of transferrin receptor 1 (TfR1) expression, using wild-type and autophagy-deficient cells, BECN1+/− and LC3B−/−. Consistently, autophagy deficiency caused depletion of intracellular iron and reduced lipid peroxidation, resulting in cell survival during erastin-induced ferroptosis. We further identified that autophagy was triggered by erastin-induced reactive oxygen species (ROS) in ferroptosis. These data provide evidence that ROS-induced autophagy is a key regulator of ferritin degradation and TfR1 expression during ferroptosis. Our study thus contributes toward our understanding of the ferroptotic processes and also helps resolve some of the controversies associated with this phenomenon.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Orthop Translat
                J Orthop Translat
                Journal of Orthopaedic Translation
                Chinese Speaking Orthopaedic Society
                2214-031X
                2214-0328
                14 March 2023
                March 2023
                14 March 2023
                : 39
                : 147-162
                Affiliations
                [a ]Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
                [b ]Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
                Author notes
                []Corresponding author. 639 Zhizaoju Road, Shanghai, 200011, PR China. osteoclast2006@ 123456163.com
                [∗∗ ]Corresponding author. 639 Zhizaoju Road, Shanghai, 200011, PR China. feiyangyn@ 123456163.com
                [∗∗∗ ]Corresponding author. 639 Zhizaoju Road, Shanghai, 200011, PR China. wanglei12041985@ 123456163.com
                [1]

                These authors contributed equally.

                Article
                S2214-031X(23)00015-3
                10.1016/j.jot.2023.02.005
                10175709
                37188001
                8edcc66a-e702-4487-a09f-41a9c27d7bf5
                © 2023 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 12 October 2022
                : 3 January 2023
                : 20 February 2023
                Categories
                Original Article

                osteoarthritis,ferroptosis,chondrocyte,forkhead box o3,extracellular matrix

                Comments

                Comment on this article