11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biotransfer, bioaccumulation and effects of herbivore dietary Co, Cu, Ni, and Zn on growth and development of the insect predator Podisus maculiventris (Say).

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased metal availability in the environment can be detrimental for the growth and development of all organisms in a food web. In part, this toxicity is due to biotransfer or bioaccumulation of metals between trophic levels. We evaluated the survival, growth, and development of a generalist Hemipteran predator (Podisus maculiventris) when fed herbivorous prey (Spodoptera exigua) reared on artificial diet amended with Cu, Zn, Ni, and Co. Predator nymphs were fed S. exigua larvae raised on diet amended with sublethal (Minimum Sublethal Concentration or MSC) or lethal (Minimum Lethal Concentration or MLC) concentrations of each metal, as well as control diet. We determined if metals were biotransferred or bioaccumulated from the diet to herbivore and predator, as well as if predator growth or survival was affected by herbivore diet. Podisus maculiventris fed herbivores raised on MLC levels of both Cu and Zn took significantly longer to mature to adults, whereas their overall survival was not affected by prey diet metal concentration for any metal. Adult weights were significantly reduced for predators raised on herbivores reared on diets amended with the MLC of Cu and Zn. Copper and Zn were bioaccumulated from diet to herbivore and from herbivore to predator, whereas Ni was biotransferred (although concentrations decreased as trophic level increased). The pattern for Co was more complex, with biotransfer the main outcome. Our results show that availability of metals in a food web can affect growth and development of a hemipteran predator, and that metals are transferred between trophic levels, with metal-specific biotransfer and bioaccumulation outcomes.

          Related collections

          Author and article information

          Journal
          J Chem Ecol
          Journal of chemical ecology
          Springer Science and Business Media LLC
          1573-1561
          0098-0331
          Jun 2013
          : 39
          : 6
          Affiliations
          [1 ] Brookstone School, Columbus, GA, USA.
          Article
          10.1007/s10886-013-0289-9
          23709043
          8e6c19f6-afdf-46c3-9d8a-ec13ea9436a6
          History

          Comments

          Comment on this article