3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Slow or fast: Implications of myofibre type and associated differences for manifestation of neuromuscular disorders

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many neuromuscular disorders can have a differential impact on a specific myofibre type, forming the central premise of this review. The many different skeletal muscles in mammals contain a spectrum of slow‐ to fast‐twitch myofibres with varying levels of protein isoforms that determine their distinctive contractile, metabolic, and other properties. The variations in functional properties across the range of classic ‘slow’ to ‘fast’ myofibres are outlined, combined with exemplars of the predominantly slow‐twitch soleus and fast‐twitch extensor digitorum longus muscles, species comparisons, and techniques used to study these properties. Other intrinsic and extrinsic differences are discussed in the context of slow and fast myofibres. These include inherent susceptibility to damage, myonecrosis, and regeneration, plus extrinsic nerves, extracellular matrix, and vasculature, examined in the context of growth, ageing, metabolic syndrome, and sexual dimorphism. These many differences emphasise the importance of carefully considering the influence of myofibre‐type composition on manifestation of various neuromuscular disorders across the lifespan for both sexes. Equally, understanding the different responses of slow and fast myofibres due to intrinsic and extrinsic factors can provide deep insight into the precise molecular mechanisms that initiate and exacerbate various neuromuscular disorders. This focus on the influence of different myofibre types is of fundamental importance to enhance translation for clinical management and therapies for many skeletal muscle disorders.

          Related collections

          Most cited references399

          • Record: found
          • Abstract: found
          • Article: not found

          PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.

          DNA microarrays can be used to identify gene expression changes characteristic of human disease. This is challenging, however, when relevant differences are subtle at the level of individual genes. We introduce an analytical strategy, Gene Set Enrichment Analysis, designed to detect modest but coordinate changes in the expression of groups of functionally related genes. Using this approach, we identify a set of genes involved in oxidative phosphorylation whose expression is coordinately decreased in human diabetic muscle. Expression of these genes is high at sites of insulin-mediated glucose disposal, activated by PGC-1alpha and correlated with total-body aerobic capacity. Our results associate this gene set with clinically important variation in human metabolism and illustrate the value of pathway relationships in the analysis of genomic profiling experiments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sex differences in immune responses

            Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fiber types in mammalian skeletal muscles.

              Mammalian skeletal muscle comprises different fiber types, whose identity is first established during embryonic development by intrinsic myogenic control mechanisms and is later modulated by neural and hormonal factors. The relative proportion of the different fiber types varies strikingly between species, and in humans shows significant variability between individuals. Myosin heavy chain isoforms, whose complete inventory and expression pattern are now available, provide a useful marker for fiber types, both for the four major forms present in trunk and limb muscles and the minor forms present in head and neck muscles. However, muscle fiber diversity involves all functional muscle cell compartments, including membrane excitation, excitation-contraction coupling, contractile machinery, cytoskeleton scaffold, and energy supply systems. Variations within each compartment are limited by the need of matching fiber type properties between different compartments. Nerve activity is a major control mechanism of the fiber type profile, and multiple signaling pathways are implicated in activity-dependent changes of muscle fibers. The characterization of these pathways is raising increasing interest in clinical medicine, given the potentially beneficial effects of muscle fiber type switching in the prevention and treatment of metabolic diseases.
                Bookmark

                Author and article information

                Journal
                Acta Physiologica
                Acta Physiologica
                Wiley
                1748-1708
                1748-1716
                August 2023
                July 21 2023
                August 2023
                : 238
                : 4
                Affiliations
                [1 ] Department of Anatomy, Physiology and Human Biology, School of Human Sciences The University of Western Australia Perth Western Australia Australia
                [2 ] Curtin Health Innovation Research Institute, Curtin Medical School Curtin University Bentley Western Australia Australia
                [3 ] Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Victoria Australia
                Article
                10.1111/apha.14012
                37306196
                8e5fd59c-7501-4599-96e1-94b0d6571d43
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article