59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In the field: exploiting the untapped potential of immunogenic modulation by radiation in combination with immunotherapy for the treatment of cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Radiation has long been the standard of care for many types of cancer. It is employed to locally eradicate tumor cells as well as alter tumor stroma with either curative or palliative intent. Radiation-induced cell damage is an immunologically active process in which danger signals are released that stimulate immune cells to phagocytose and present locally released tumor-associated antigens (TAAs). Recent studies have indicated that radiotherapy can also alter the phenotype of cancer cells that remain after treatment. These cells upregulate TAAs as well as markers, including major histocompatibility complex and costimulatory molecules, that make them much more immunostimulatory. As our understanding of the immunomodulatory effects of radiation has improved, interest in combining this type of therapy with immune-based therapies for the treatment of cancer has grown. Therapeutic cancer vaccines have been shown to initiate the dynamic process of host immune system activation, culminating in the recognition of host cancer cells as foreign. The environment created after radiotherapy can be exploited by active therapeutic cancer vaccines in order to achieve further, more robust immune system activation. This review highlights preclinical studies that have examined the alteration of the tumor microenvironment with regard to immunostimulatory molecules following different types of radiotherapy, including external beam radiation, radiolabeled monoclonal antibodies, bone-seeking radionuclides, and brachytherapy. We also emphasize how combination therapy with a cancer vaccine can exploit these changes to achieve improved therapeutic benefit. Lastly, we describe how these laboratory findings are translating into clinical benefit for patients undergoing combined radiotherapy and cancer vaccination.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Maximizing tumor immunity with fractionated radiation.

          Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-γ enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4(+)CD25(hi)Foxp3(+) T cells. After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Combining radiotherapy and immunotherapy: a revived partnership.

            Ionizing radiation therapy (RT) is an important local modality for the treatment of cancer. The current rationale for its use is based largely on the ability of RT to kill the cancer cells by a direct cytotoxic effect. Nevertheless, considerable evidence indicates that RT effects extend beyond the mere elimination of the more radiosensitive fraction of cancer cells present within a tumor at the time of radiation exposure. For instance, a large body of evidence is accumulating on the ability of RT to modify the tumor microenvironment and generate inflammation. This might have far-reaching consequences regarding the response of a patient to treatment, especially if radiation-induced tumor cell kill were to translate into the generation of effective antitumor immunity. Although much remains to be learned about how radiation can impact tumor immunogenicity, data from preclinical studies provide the proof of principle that different immunotherapeutic strategies can be combined with RT to enhance antitumor effects. Conversely, RT could be a useful tool to combine with immunotherapy. This article will briefly summarize what is known about the impact of RT on tumor immunity, including tumor-associated antigens, antigen-presenting cells, and effector mechanisms. In addition, the experimental evidence supporting the contention that RT can be used as a tool to induce antitumor immunity is discussed, and a new approach to radioimmunotherapy of cancer is proposed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunogenic cancer cell death: a key-lock paradigm.

              Physiological cell death, which occurs as a continuous byproduct of cellular turnover, is non-immunogenic or even tolerogenic, thereby avoiding autoimmunity. By contrast, cancer cell death elicited by radiotherapy and some chemotherapeutic agents such as anthracyclines is immunogenic. Recent data suggest that innate and cognate immune responses elicited by such anti-cancer agents are required for an optimal therapeutic outcome, underscoring the clinical relevance of immunogenic cell death. Here we discuss the concept that immunogenic death involves changes in the composition of the cell surface, as well as the release of soluble immunogenic signals that occur in a defined temporal sequence. This 'key' then operates on a series of receptors expressed by dendritic cells (DC, the 'lock') to allow for the presentation of tumor antigens to T cells and for the initiation of a productive immune response. Immunogenic cell death is characterized by the early cell surface exposure of chaperones including calreticulin and/or heat shock proteins, which determine the uptake of tumor antigens and/or affect DC maturation. Moreover, the late release of High mobility group box 1 (HMGB1), which acts on toll-like receptor 4 (TLR4), is required for optimal presentation of antigens from dying tumor cells. Nonetheless, numerous details on the molecular events that define immunogenicity remain to be defined, both at the level of the dying cancer cells and at the level of the responding innate effectors.
                Bookmark

                Author and article information

                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Research Foundation
                2234-943X
                06 September 2012
                2012
                : 2
                : 104
                Affiliations
                [1] 1simpleLaboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
                [2] 2simpleDepartment of Radiation Oncology, Albert Einstein College of Medicine New York, NY, USA
                Author notes

                Edited by: Silvia C. Formenti, New York University Langone Medical Center, USA

                Reviewed by: Sandra Demaria, New York University School of Medicine, USA; Tomas Radivoyevitch, Case Western Reserve University, USA

                *Correspondence: James W. Hodge, Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Room 8B09, Bethesda, MD 20892, USA. e-mail: jh241d@ 123456nih.gov

                This article was submitted to Frontiers in Radiation Oncology, a specialty of Frontiers in Oncology.

                Article
                10.3389/fonc.2012.00104
                3434425
                22973551
                8e581fd2-b2d7-4d04-9fc2-0816c8b3940c
                Copyright © Kwilas, Donahue, Bernstein and Hodge.

                This is an openaccess article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 01 June 2012
                : 09 August 2012
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 56, Pages: 11, Words: 0
                Categories
                Oncology
                Review Article

                Oncology & Radiotherapy
                abscopal effect,radiation therapy,cancer vaccine,cancer immunotherapy
                Oncology & Radiotherapy
                abscopal effect, radiation therapy, cancer vaccine, cancer immunotherapy

                Comments

                Comment on this article