57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Morris-Lecar neuron model embeds a leaky integrate-and-fire model

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We show that the stochastic Morris-Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein-Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a leaky integrate-and-fire (LIF) model prior to firing. A new model constructed from a radial OU process together with a simple firing mechanism based on detailed Morris-Lecar firing statistics reproduces the Morris-Lecar Interspike Interval (ISI) distribution, and has the computational advantages of a LIF. The result justifies the large amount of attention paid to the LIF models.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Voltage oscillations in the barnacle giant muscle fiber.

          Barnacle muscle fibers subjected to constant current stimulation produce a variety of types of oscillatory behavior when the internal medium contains the Ca++ chelator EGTA. Oscillations are abolished if Ca++ is removed from the external medium, or if the K+ conductance is blocked. Available voltage-clamp data indicate that the cell's active conductance systems are exceptionally simple. Given the complexity of barnacle fiber voltage behavior, this seems paradoxical. This paper presents an analysis of the possible modes of behavior available to a system of two noninactivating conductance mechanisms, and indicates a good correspondence to the types of behavior exhibited by barnacle fiber. The differential equations of a simple equivalent circuit for the fiber are dealt with by means of some of the mathematical techniques of nonlinear mechanics. General features of the system are (a) a propensity to produce damped or sustained oscillations over a rather broad parameter range, and (b) considerable latitude in the shape of the oscillatory potentials. It is concluded that for cells subject to changeable parameters (either from cell to cell or with time during cellular activity), a system dominated by two noninactivating conductances can exhibit varied oscillatory and bistable behavior.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input.

            A Burkitt (2006)
            The integrate-and-fire neuron model is one of the most widely used models for analyzing the behavior of neural systems. It describes the membrane potential of a neuron in terms of the synaptic inputs and the injected current that it receives. An action potential (spike) is generated when the membrane potential reaches a threshold, but the actual changes associated with the membrane voltage and conductances driving the action potential do not form part of the model. The synaptic inputs to the neuron are considered to be stochastic and are described as a temporally homogeneous Poisson process. Methods and results for both current synapses and conductance synapses are examined in the diffusion approximation, where the individual contributions to the postsynaptic potential are small. The focus of this review is upon the mathematical techniques that give the time distribution of output spikes, namely stochastic differential equations and the Fokker-Planck equation. The integrate-and-fire neuron model has become established as a canonical model for the description of spiking neurons because it is capable of being analyzed mathematically while at the same time being sufficiently complex to capture many of the essential features of neural processing. A number of variations of the model are discussed, together with the relationship with the Hodgkin-Huxley neuron model and the comparison with electrophysiological data. A brief overview is given of two issues in neural information processing that the integrate-and-fire neuron model has contributed to - the irregular nature of spiking in cortical neurons and neural gain modulation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Strong approximation theorems for density dependent Markov chains

                Bookmark

                Author and article information

                Journal
                30 July 2011
                Article
                10.1007/s00285-012-0552-7
                1108.0073
                8e313baf-f89d-4ea1-af4a-0b38c23c153d

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Journal of Mathematical Biology, 67(2), 239-259, 2013
                19 pages, 6 figures
                math.PR q-bio.NC

                Comments

                Comment on this article