12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of the COVID-19 pandemic on stress and other psychological factors in pregnant women giving birth during the first wave of the pandemic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The onset of mental illness such as depression and anxiety disorders in pregnancy and postpartum period is common. The coronavirus induced disease 2019 (COVID-19) pandemic and the resulting public policy responses represent an exceptional situation worldwide and there are hints for adverse psychosocial impact, hence, the study of psychological effects of the pandemic in women during hospitalization for delivery and in the postpartum period is highly relevant.

          Methods

          Patients who gave birth during the first wave of the COVID-19 pandemic in Germany (March to June 2020) at the Department of Obstetrics and Gynecology, University of Würzburg, Germany, were recruited at hospital admission for delivery. Biosamples were collected for analysis of SARS-CoV-2 infection and various stress hormones and interleukin-6 (IL-6). In addition to sociodemographic and medical obstetric data, survey questionnaires in relation to concerns about and fear of COVID-19, depression, stress, anxiety, loneliness, maternal self-efficacy and the mother–child bonding were administered at T1 (delivery stay) and T2 (3–6 months postpartum).

          Results

          In total, all 94 recruited patients had a moderate concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at T1 with a significant rise at T2. This concern correlated with low to low-medium general psychosocial stress levels and stress symptoms, and the women showed a significant increase of active coping from T1 to T2. Anxiety levels were low and the Edinburgh Postnatal Depression Scale showed a medium score of 5 with a significant (T1), but only week correlation with the concerns about SARS-CoV-2. In contrast to the overall good maternal bonding without correlation to SARS-CoV-2 concern, the maternal self-efficiency correlated negatively with the obstetric impairment caused by the COVID-19 pandemic.

          Conclusion

          Obstetric patients` concerns regarding SARS-CoV-2 and the accompanying pandemic increased during the course of the pandemic correlating positively with stress and depression. Of note is the increase in active coping over time and the overall good mother–child-bonding. Maternal self-efficacy was affected in part by the restrictions of the pandemic.

          Clinical trial registration DRKS00022506

          Plain Language Summary

          The global pandemic of COVID-19 (coronavirus induced disease 2019) is challenging our society in many ways. Especially pregnant women are facing extraordinary conditions and worries, like uncertain risks for mother and fetus in case of infection, restricted prenatal classes or restricted visitor regulations in hospitals. Particularly it is known that pregnancy and the postnatal period are presenting a more psychologically vulnerable time in a woman’s life. Developing the GeZeCO study, we aimed to focus on the pandemic’s effects on mental health of pregnant women during this time. Women giving birth in the department of obstetrics of the University Hospital Würzburg were asked to participate in the study. In total, 94 women completed several questionnaires concerning their mental health postpartum and again after 3 to 6 months. Further, we took blood samples of the women during the delivery stay and registered sociodemographic and obstetric data. Our results showed, that the women’s concern relating to COVID-19, as well as the level of depression and anxiety raised during the pandemic. In addition, the self-efficacy of the mothers was affected by the restriction measures. Despite this, the women had at large a good mother–child-bonding and their competence of active coping increased during time. In summary, we did find that the mental health of obstetric patients is impaired by the COVID-19 pandemic. This points out the importance of not only attending to physical health but also taking care of psychological stress and mental health problems of obstetric patients during this exceptional time.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          WHO Declares COVID-19 a Pandemic

          The World Health Organization (WHO) on March 11, 2020, has declared the novel coronavirus (COVID-19) outbreak a global pandemic (1). At a news briefing, WHO Director-General, Dr. Tedros Adhanom Ghebreyesus, noted that over the past 2 weeks, the number of cases outside China increased 13-fold and the number of countries with cases increased threefold. Further increases are expected. He said that the WHO is “deeply concerned both by the alarming levels of spread and severity and by the alarming levels of inaction,” and he called on countries to take action now to contain the virus. “We should double down,” he said. “We should be more aggressive.” Among the WHO’s current recommendations, people with mild respiratory symptoms should be encouraged to isolate themselves, and social distancing is emphasized and these recommendations apply even to countries with no reported cases (2). Separately, in JAMA, researchers report that SARS-CoV-2, the virus that causes COVID-19, was most often detected in respiratory samples from patients in China. However, live virus was also found in feces. They conclude: “Transmission of the virus by respiratory and extrarespiratory routes may help explain the rapid spread of disease.”(3). COVID-19 is a novel disease with an incompletely described clinical course, especially for children. In a recente report W. Liu et al described that the virus causing Covid-19 was detected early in the epidemic in 6 (1.6%) out of 366 children (≤16 years of age) hospitalized because of respiratory infections at Tongji Hospital, around Wuhan. All these six children had previously been completely healthy and their clinical characteristics at admission included high fever (>39°C) cough and vomiting (only in four). Four of the six patients had pneumonia, and only one required intensive care. All patients were treated with antiviral agents, antibiotic agents, and supportive therapies, and recovered after a median 7.5 days of hospitalization. (4). Risk factors for severe illness remain uncertain (although older age and comorbidity have emerged as likely important factors), the safety of supportive care strategies such as oxygen by high-flow nasal cannula and noninvasive ventilation are unclear, and the risk of mortality, even among critically ill patients, is uncertain. There are no proven effective specific treatment strategies, and the risk-benefit ratio for commonly used treatments such as corticosteroids is unclear (3,5). Septic shock and specific organ dysfunction such as acute kidney injury appear to occur in a significant proportion of patients with COVID-19–related critical illness and are associated with increasing mortality, with management recommendations following available evidence-based guidelines (3). Novel COVID-19 “can often present as a common cold-like illness,” wrote Roman Wöelfel et al. (6). They report data from a study concerning nine young- to middle-aged adults in Germany who developed COVID-19 after close contact with a known case. All had generally mild clinical courses; seven had upper respiratory tract disease, and two had limited involvement of the lower respiratory tract. Pharyngeal virus shedding was high during the first week of symptoms, peaking on day 4. Additionally, sputum viral shedding persisted after symptom resolution. The German researchers say the current case definition for COVID-19, which emphasizes lower respiratory tract disease, may need to be adjusted(6). But they considered only young and “normal” subjecta whereas the story is different in frail comorbid older patients, in whom COVID 19 may precipitate an insterstitial pneumonia, with severe respiratory failure and death (3). High level of attention should be paid to comorbidities in the treatment of COVID-19. In the literature, COVID-19 is characterised by the symptoms of viral pneumonia such as fever, fatigue, dry cough, and lymphopenia. Many of the older patients who become severely ill have evidence of underlying illness such as cardiovascular disease, liver disease, kidney disease, or malignant tumours. These patients often die of their original comorbidities. They die “with COVID”, but were extremely frail and we therefore need to accurately evaluate all original comorbidities. In addition to the risk of group transmission of an infectious disease, we should pay full attention to the treatment of the original comorbidities of the individual while treating pneumonia, especially in older patients with serious comorbid conditions and polipharmacy. Not only capable of causing pneumonia, COVID-19 may also cause damage to other organs such as the heart, the liver, and the kidneys, as well as to organ systems such as the blood and the immune system. Patients die of multiple organ failure, shock, acute respiratory distress syndrome, heart failure, arrhythmias, and renal failure (5,6). What we know about COVID 19? In December 2019, a cluster of severe pneumonia cases of unknown cause was reported in Wuhan, Hubei province, China. The initial cluster was epidemiologically linked to a seafood wholesale market in Wuhan, although many of the initial 41 cases were later reported to have no known exposure to the market (7). A novel strain of coronavirus belonging to the same family of viruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), as well as the 4 human coronaviruses associated with the common cold, was subsequently isolated from lower respiratory tract samples of 4 cases on 7 January 2020. On 30 January 2020, the WHO declared that the SARS-CoV-2 outbreak constituted a Public Health Emergency of International Concern, and more than 80, 000 confirmed cases had been reported worldwide as of 28 February 2020 (8). On 31 January 2020, the U.S. Centers for Disease Control and Prevention announced that all citizens returning from Hubei province, China, would be subject to mandatory quarantine for up to 14 days. But from China COVID 19 arrived to many other countries. Rothe C et al reported a case of a 33-year-old otherwise healthy German businessman :she became ill with a sore throat, chills, and myalgias on January 24, 2020 (9). The following day, a fever of 39.1°C developed, along with a productive cough. By the evening of the next day, he started feeling better and went back to work on January 27. Before the onset of symptoms, he had attended meetings with a Chinese business partner at his company near Munich on January 20 and 21. The business partner, a Shanghai resident, had visited Germany between January 19 and 22. During her stay, she had been well with no signs or symptoms of infection but had become ill on her flight back to China, where she tested positive for 2019-nCoV on January 26. This case of 2019-nCoV infection was diagnosed in Germany and transmitted outside Asia. However, it is notable that the infection appears to have been transmitted during the incubation period of the index patient, in whom the illness was brief and nonspecific. The fact that asymptomatic persons are potential sources of 2019-nCoV infection may warrant a reassessment of transmission dynamics of the current outbreak (9). Our current understanding of the incubation period for COVID-19 is limited. An early analysis based on 88 confirmed cases in Chinese provinces outside Wuhan, using data on known travel to and from Wuhan to estimate the exposure interval, indicated a mean incubation period of 6.4 days (95% CI, 5.6 to 7.7 days), with a range of 2.1 to 11.1 days. Another analysis based on 158 confirmed cases outside Wuhan estimated a median incubation period of 5.0 days (CI, 4.4 to 5.6 days), with a range of 2 to 14 days. These estimates are generally consistent with estimates from 10 confirmed cases in China (mean incubation period, 5.2 days [CI, 4.1 to 7.0 days] and from clinical reports of a familial cluster of COVID-19 in which symptom onset occurred 3 to 6 days after assumed exposure in Wuhan (10-12). The incubation period can inform several important public health activities for infectious diseases, including active monitoring, surveillance, control, and modeling. Active monitoring requires potentially exposed persons to contact local health authorities to report their health status every day. Understanding the length of active monitoring needed to limit the risk for missing infections is necessary for health departments to effectively use resources. A recent paper provides additional evidence for a median incubation period for COVID-19 of approximately 5 days (13). Lauer et al suggest that 101 out of every 10 000 cases will develop symptoms after 14 days of active monitoring or quarantinen (13). Whether this rate is acceptable depends on the expected risk for infection in the population being monitored and considered judgment about the cost of missing cases. Combining these judgments with the estimates presented here can help public health officials to set rational and evidence-based COVID-19 control policies. Note that the proportion of mild cases detected has increased as surveillance and monitoring systems have been strengthened. The incubation period for these severe cases may differ from that of less severe or subclinical infections and is not typically an applicable measure for those with asymptomatic infections In conclusion, in a very short period health care systems and society have been severely challenged by yet another emerging virus. Preventing transmission and slowing the rate of new infections are the primary goals; however, the concern of COVID-19 causing critical illness and death is at the core of public anxiety. The critical care community has enormous experience in treating severe acute respiratory infections every year, often from uncertain causes. The care of severely ill patients, in particular older persons with COVID-19 must be grounded in this evidence base and, in parallel, ensure that learning from each patient could be of great importance to care all population,
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale.

            The development of a 10-item self-report scale (EPDS) to screen for Postnatal Depression in the community is described. After extensive pilot interviews a validation study was carried out on 84 mothers using the Research Diagnostic Criteria for depressive illness obtained from Goldberg's Standardised Psychiatric Interview. The EPDS was found to have satisfactory sensitivity and specificity, and was also sensitive to change in the severity of depression over time. The scale can be completed in about 5 minutes and has a simple method of scoring. The use of the EPDS in the secondary prevention of Postnatal Depression is discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)

              COVID-19 has prompted unprecedented government action around the world. We introduce the Oxford COVID-19 Government Response Tracker (OxCGRT), a dataset that addresses the need for continuously updated, readily usable and comparable information on policy measures. From 1 January 2020, the data capture government policies related to closure and containment, health and economic policy for more than 180 countries, plus several countries' subnational jurisdictions. Policy responses are recorded on ordinal or continuous scales for 19 policy areas, capturing variation in degree of response. We present two motivating applications of the data, highlighting patterns in the timing of policy adoption and subsequent policy easing and reimposition, and illustrating how the data can be combined with behavioural and epidemiological indicators. This database enables researchers and policymakers to explore the empirical effects of policy responses on the spread of COVID-19 cases and deaths, as well as on economic and social welfare.
                Bookmark

                Author and article information

                Contributors
                huebner_t1@ukw.de
                Journal
                Reprod Health
                Reprod Health
                Reproductive Health
                BioMed Central (London )
                1742-4755
                5 September 2022
                5 September 2022
                2022
                : 19
                : 189
                Affiliations
                [1 ]GRID grid.411760.5, ISNI 0000 0001 1378 7891, Department of Obstetrics and Gynaecology, , University Hospital of Würzburg, ; Josef-Schneider-Str. 4, 97080 Würzburg, Germany
                [2 ]GRID grid.411760.5, ISNI 0000 0001 1378 7891, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, , University Hospital, ; Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
                Author information
                http://orcid.org/0000-0003-2948-5315
                Article
                1493
                10.1186/s12978-022-01493-9
                9444078
                36064560
                8dc2f3f4-c990-48ee-9b7a-99b5f5a962d3
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 27 November 2021
                : 16 August 2022
                Funding
                Funded by: Universitätsklinikum Würzburg (8913)
                Categories
                Research
                Custom metadata
                © The Author(s) 2022

                Obstetrics & Gynecology
                covid-19 pandemic,concern,depression,anxiety,maternal bonding,self-efficacy
                Obstetrics & Gynecology
                covid-19 pandemic, concern, depression, anxiety, maternal bonding, self-efficacy

                Comments

                Comment on this article