0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Continuous Sleep State Artificial Neural Network Model Based on Multi-Feature Fusion of Polysomnographic Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Sleep structure is crucial in sleep research, characterized by its dynamic nature and temporal progression. Traditional 30-second epochs falter in capturing the intricate subtleties of various micro-sleep states. This paper introduces an innovative artificial neural network model to generate continuous sleep depth value (SDV), utilizing a novel multi-feature fusion approach with EEG data, seamlessly integrating temporal consistency.

          Methods

          The study involved 50 normal and 100 obstructive sleep apnea–hypopnea syndrome (OSAHS) participants. After segmenting the sleep data into 3-second intervals, a diverse array of 38 feature values were meticulously extracted, including power, spectrum entropy, frequency band duration and so on. The ensemble random forest model calculated the timing fitness value for all the features, from which the top 7 time-correlated features were selected to create detailed sleep sample values ranging from 0 to 1. Subsequently, an artificial neural network (ANN) model was trained to delineate sleep continuity details, unravel concealed patterns, and far surpassed the traditional 5-stage categorization (W, N1, N2, N3, and REM).

          Results

          The SDV changes from wakeful stage (mean 0.7021, standard deviation 0.2702) to stage N3 (mean 0.0396, standard deviation 0.0969). During the arousal epochs, the SDV increases from the range (0.1 to 0.3) to the range around 0.7, and decreases below 0.3. When in the deep sleep (≤0.1), the probability of arousal of normal individuals is less than 10%, while the average arousal probability of OSA patients is close to 30%.

          Conclusion

          A sleep continuity model is proposed based on multi-feature fusion, which generates SDV ranging from 0 to 1 (representing deep sleep to wakefulness). It can capture the nuances of the traditional five stages and subtle differences in microstates of sleep, considered as a complement or even an alternative to traditional sleep analysis.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG

          This paper proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features, which require prior knowledge of sleep analysis. Only a few of them encode the temporal information, such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize convolutional neural networks to extract time-invariant features, and bidirectional-long short-term memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG (left), Fpz-Cz, and Pz-Oz) from two public sleep data sets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared with the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both data sets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different data sets without utilizing any hand-engineered features.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A convolutional neural network for sleep stage scoring from raw single-channel EEG

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insomnia and its treatment. Prevalence and correlates.

              Data for this report come from a nationally representative probability sample survey of noninstitutionalized adults, aged 18 to 79 years. The survey, conducted in 1979, found that insomnia afflicts 35% of all adults during the course of a year; about half of these persons experience the problem as serious. Those with serious insomnia tend to be women and older, and they are more likely than others to display high levels of psychic distress and somatic anxiety, symptoms resembling major depression, and multiple health problems. During the year prior to the survey, 2.6% of adults had used a medically prescribed hypnotic. Typically, use occurred on brief occasions, one or two days at a time, or for short durations of regular use lasting less than two weeks. The survey also found a small group of hypnotic users (11% of all users; 0.3% of all adults) who reported using the medication regularly for a year or longer. If we include anxiolytics and antidepressants, 4.3% of adults had used a medically prescribed psychotherapeutic drug that was prescribed for sleep; 3.1% had used an over-the-counter sleeping pill. The majority of serious insomniacs (85%) were untreated by either prescribed or over-the-counter medications.
                Bookmark

                Author and article information

                Journal
                Nat Sci Sleep
                Nat Sci Sleep
                nss
                Nature and Science of Sleep
                Dove
                1179-1608
                12 June 2024
                2024
                : 16
                : 769-786
                Affiliations
                [1 ]Department of Big Data and Fundamental Sciences, Shandong Institute of Petroleum and Chemical Technology , Dongying, Shandong, 257061, People’s Republic of China
                [2 ]Department of Respiratory and Sleep Medicine, Bin Zhou Medical University Hospital , Binzhou, Shandong, 256600, People’s Republic of China
                [3 ]College of Software and Microelectronics, Peking University , Beijing, 100000, People’s Republic of China
                Author notes
                Correspondence: Jian Cui, Department of Big Data and Fundamental Sciences, Shandong Institute of Petroleum and Chemical Technology , 271 Bei Er Lu, Dongying City, Shandong Province, 257061, People’s Republic of China, Tel +86-15066073763, Email jian.cui@sdipct.edu.cn
                Author information
                http://orcid.org/0009-0002-1342-3291
                Article
                463897
                10.2147/NSS.S463897
                11182880
                38894976
                8db9fb7a-c24c-4792-a745-77bd273cebfe
                © 2024 Cui et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 12 February 2024
                : 03 June 2024
                Page count
                Figures: 12, Tables: 2, References: 34, Pages: 18
                Categories
                Original Research

                sleep depth value,sleep continuity,eeg features,timing fitness,ann model

                Comments

                Comment on this article