64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gating the mechanical channel Piezo1 : A comparison between whole-cell and patch recording

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Piezo1 is a eukaryotic cation-selective mechanosensitive ion channel. To understand channel function in vivo, we first need to analyze and compare the response in the whole cell and the patch. In patches, Piezo1 inactivates and the current is fit well by a 3-state model with a single pressure-dependent rate. However, repeated stimulation led to an irreversible loss of inactivation. Remarkably, the loss of inactivation did not occur on a channel-by-channel basis but on all channels at the same time. Thus, the channels are in common mechanical domain. Divalent ions decreased the unitary conductance from ~68 pS to ~37 pS, irrespective of the cation species. Mg and Ca did not affect inactivation rates, but Zn caused a 3-fold slowing. CytochalasinD (cytoD) does not alter inactivation rates or the transition to the non-inactivating mode but does reduce the steady-state response. Whole-cell currents were similar to patch currents but also had significant differences. In contrast to the patch, cytoD inhibited the current suggesting that the activating forces were transmitted through the actin cytoskeleton. Hypotonic swelling that prestressed the cytoskeleton and the bilayer greatly increased the sensitivity of both control and cytoD cells so there are two pathways to transmit force to the channels. In contrast to patch, removing divalent ions decreased the whole-cell current. The difference between whole cell and patch properties provide new insights into our understanding of the Piezo1 gating mechanisms and cautions against generalization to in situ behavior.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Piezos are pore-forming subunits of mechanically activated channels

          Mechanotransduction plays a crucial role in physiology. Biological processes including sensing touch and sound waves require yet unidentified cation channels that detect pressure. Mouse piezo1 (mpiezo1) and mpiezo2 induce mechanically activated cationic currents in cells; however, it is unknown if piezos are pore-forming ion channels or modulate ion channels. We show that Drosophila piezo (dpiezo) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. mpiezo1 assembles as a ~1.2 million-Dalton tetramer, with no evidence of other proteins in this complex. Finally, purified mpiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium red-sensitive ion channels. These data demonstrate that piezos are an evolutionarily conserved ion channel family involved in mechanotransduction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4.

            Cells can respond to mechanical stress by gating mechanosensitive ion channels (MSCs). The cloning of Piezo1, a eukaryotic cation selective MSC, defines a new system for studying mechanical transduction at the cellular level. Because Piezo1 has electrophysiological properties similar to those of endogenous cationic MSCs that are selectively inhibited by the peptide GsMTx4, we tested whether the peptide targets Piezo1 activity. Extracellular GsMTx4 at micromolar concentrations reversibly inhibited ∼80% of the mechanically induced current of outside-out patches from transfected HEK293 cells. The inhibition was voltage insensitive, and as seen with endogenous MSCs, the mirror image d enantiomer inhibited like the l. The rate constants for binding and unbinding based on Piezo1 current kinetics provided association and dissociation rates of 7.0 × 10(5) M(-1) s(-1) and 0.11 s(-1), respectively, and a K(D) of ∼155 nM, similar to values previously reported for endogenous MSCs. Consistent with predicted gating modifier behavior, GsMTx4 produced an ∼30 mmHg rightward shift in the pressure-gating curve and was active on closed channels. In contrast, streptomycin, a nonspecific inhibitor of cationic MSCs, showed the use-dependent inhibition characteristic of open channel block. The peptide did not block currents of the mechanical channel TREK-1 on outside-out patches. Whole-cell Piezo1 currents were also reversibly inhibited by GsMTx4, and although the off rate was nearly identical to that of outside-out patches, differences were observed for the on rate. The ability of GsMTx4 to target the mechanosensitivity of Piezo1 supports the use of this channel in high-throughput screens for pharmacological agents and diagnostic assays. © 2011 American Chemical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stretch-activated ion channels: what are they?

              Mechanosensitive ion channels (MSCs) exist in all cells, but mechanosensitivity is a phenotype not a genotype. Specialized mechanoreceptors such as the hair cells of the cochlea require elaborate mechanical impedance matching to couple the channels to the external stress. In contrast, MSCs in nonspecialized cells appear activated by stress in the bilayer local to the channel--within about three lipids. Local mechanical stress can be produced by far-field tension, amphipaths, phase separations, the cytoskeleton, the extracellular matrix, and the adhesion energy between the membrane and a patch pipette. Understanding MSC function requires under standing the stimulus.
                Bookmark

                Author and article information

                Journal
                Channels (Austin)
                Channels (Austin)
                CHAN
                Channels
                Landes Bioscience
                1933-6950
                1933-6969
                01 July 2012
                01 July 2012
                : 6
                : 4
                : 282-289
                Affiliations
                Center for Single Molecule Biophysics; Physiology and Biophysics; State University of New York at Buffalo; Buffalo, NY USA
                Author notes
                [* ]Correspondence to: Philip A. Gottlieb, Email: philgott@ 123456buffalo.edu and Frederick Sachs, Email: sachs@ 123456buffalo.edu
                Article
                2011CHANNELS0089R 21064
                10.4161/chan.21064
                3508907
                22790451
                8db12d6b-3e5a-4976-acbb-f96b647ee6fb
                Copyright © 2012 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                Categories
                Research Paper

                Molecular biology
                patch currents,cell swelling,channel gating,whole cell currents,mechanical ion channels,cytoskeleton,piezo1,inactivation

                Comments

                Comment on this article