8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Epidemiology and Health Impacts of Neuroendocrine Tumors

      Submit here before August 30, 2024

      About Neuroendocrinology: 3.2 Impact Factor I 8.3 CiteScore I 1.009 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Anti-Inflammatory Effect of the Endocannabinoid Anandamide in Experimental Periodontitis and Stress in the Rat

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Periodontitis is an infectious disease leading to inflammation and destruction of tissue surrounding and supporting the tooth. The progress of the inflammatory response depends on the host’s immune system and risk factors such as stress. The aim of the present study was to investigate the role of the endocannabinoid anandamide (AEA) in experimental periodontitis with restraint stress, since the endocannabinoid system is known to modulate the hypothalamo-pituitary-adrenal axis as well as immune functions and has been found in human gingival tissues. Methods: Experimental periodontitis was induced by ligature around first inferior molars and immobilization stress for 2 h twice daily for 7 days in a rat model. Results: Corticosterone plasma levels, locomotor activity, adrenal gland weight and bone loss were increased in periodontitis and stress groups, and there was also less weight gain. The inflammatory parameters such as prostaglandin E<sub>2</sub> (radioimmunoassay), nitric oxide (radioconversion of <sup>14</sup>C-arginine), tumor necrosis factor (TNF)-α (ELISA) and interleukin (IL)-1β (Western blot) measured in the gingival tissue were significantly increased in the periodontitis groups compared to the control group. Local injection of AEA (10<sup>–8</sup> M, 30 µl) decreased corticosterone plasma levels and the content of the cytokines TNF-α and IL-1β in gingival tissue in periodontitis-stress groups. These AEA-induced inhibitions were mediated by CB<sub>1</sub> and CB<sub>2</sub> cannabinoid receptors since the injection of both antagonists together, AM251 (10<sup>–6</sup> M) and AM630 (10<sup>–6</sup> M) in 30 µl, prevented these effects. Conclusion: The endocannabinoid AEA diminishes the inflammatory response in periodontitis even during a stressful situation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators.

          Stress begins in the brain and affects the brain, as well as the rest of the body. Acute stress responses promote adaptation and survival via responses of neural, cardiovascular, autonomic, immune and metabolic systems. Chronic stress can promote and exacerbate pathophysiology through the same systems that are dysregulated. The burden of chronic stress and accompanying changes in personal behaviors (smoking, eating too much, drinking, poor quality sleep; otherwise referred to as "lifestyle") is called allostatic overload. Brain regions such as hippocampus, prefrontal cortex and amygdala respond to acute and chronic stress and show changes in morphology and chemistry that are largely reversible if the chronic stress lasts for weeks. However, it is not clear whether prolonged stress for many months or years may have irreversible effects on the brain. The adaptive plasticity of chronic stress involves many mediators, including glucocorticoids, excitatory amino acids, endogenous factors such as brain neurotrophic factor (BDNF), polysialated neural cell adhesion molecule (PSA-NCAM) and tissue plasminogen activator (tPA). The role of this stress-induced remodeling of neural circuitry is discussed in relation to psychiatric illnesses, as well as chronic stress and the concept of top-down regulation of cognitive, autonomic and neuroendocrine function. This concept leads to a different way of regarding more holistic manipulations, such as physical activity and social support as an important complement to pharmaceutical therapy in treatment of the common phenomenon of being "stressed out". Policies of government and the private sector play an important role in this top-down view of minimizing the burden of chronic stress and related lifestyle (i.e. allostatic overload).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Global periodontal disease epidemiology.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cannabinoid physiology and pharmacology: 30 years of progress.

              Delta9-Tetrahydrocannabinol from Cannabis sativa is mimicked by cannabimimetic analogs such as CP55940 and WIN55212-2, and antagonized by rimonabant and SR144528, through G-protein-coupled receptors, CB1 in the brain, and CB2 in the immune system. Eicosanoids anandamide and 2-arachidonoylglycerol are the "endocannabinoid" agonists for these receptors. CB1 receptors are abundant in basal ganglia, hippocampus and cerebellum, and their functional activity can be mapped during behaviors using cerebral metabolism as the neuroimaging tool. CB1 receptors couple to G(i/o) to inhibit cAMP production, decrease Ca2+ conductance, increase K+ conductance, and increase mitogen-activated protein kinase activity. Functional activation of G-proteins can be imaged by [35S]GTPgammaS autoradiography. Post-synaptically generated endocannabinoids form the basis of a retrograde signaling mechanism referred to as depolarization-induced suppression of inhibition (DSI) or excitation (DSE). Under circumstances of sufficient intracellular Ca2+ (e.g., burst activity in seizures), synthesis of endocannabinoids releases a diffusible retrograde messenger to stimulate presynaptic CB1 receptors. This results in suppression of gamma-aminobutyric acid (GABA) release, thereby relieving the post-synaptic inhibition. Tolerance develops as neurons adjust both receptor number and cellular signal transduction to the chronic administration of cannabinoid drugs. Future therapeutic drug design can progress based upon our current understanding of the physiology and pharmacology of CB1, CB2 and related receptors. One very important role for CB1 antagonists will be in the treatment of craving in the disease of substance abuse.
                Bookmark

                Author and article information

                Journal
                NIM
                Neuroimmunomodulation
                10.1159/issn.1021-7401
                Neuroimmunomodulation
                S. Karger AG
                1021-7401
                1423-0216
                2012
                July 2012
                06 July 2012
                : 19
                : 5
                : 293-303
                Affiliations
                aDepartment of Physiology, School of Dentistry, and bCenter of Pharmacological and Botanical Studies, CEFYBO-CONICET-UBA, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
                Author notes
                *Elisa Rettori, Department of Physiology, School of Dentistry, University of Buenos Aires, Marcelo T. de Alvear 2142 3° A, Buenos Aires 1122 (Argentina), Tel. +54 11 4964 1275, E-Mail elisarettori@yahoo.com.ar
                Article
                339113 Neuroimmunomodulation 2012;19:293–303
                10.1159/000339113
                22777139
                8dadb30e-c08f-432c-b478-81cf49c84813
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 28 March 2012
                : 19 April 2012
                Page count
                Figures: 5, Pages: 11
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Immobilization stress,Bone loss,Molar ligature,Corticosterone,Nitric oxide,Prostaglandin E,Cytokines

                Comments

                Comment on this article