12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of D-Arabitol as Newly Discovered Carbon Source of Bacillus methanolicus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacillus methanolicus is a Gram-positive, thermophilic, methanol-utilizing bacterium. As a facultative methylotroph, B. methanolicus is also known to utilize D-mannitol, D-glucose and, as recently discovered, sugar alcohol D-arabitol. While metabolic pathways for utilization of methanol, mannitol and glucose are known, catabolism of arabitol has not yet been characterized in B. methanolicus. In this work we present the elucidation of this hitherto uncharted pathway. In order to confirm our predictions regarding genes coding for arabitol utilization, we performed differential gene expression analysis of B. methanolicus MGA3 cells grown on arabitol as compared to mannitol via transcriptome sequencing (RNA-seq). We identified a gene cluster comprising eight genes that was up-regulated during growth with arabitol as a sole carbon source. The RNA-seq results were subsequently confirmed via qRT-PCR experiments. The transcriptional organization of the gene cluster identified via RNA-seq was analyzed and it was shown that the arabitol utilization genes are co-transcribed in an operon that spans from BMMGA3_RS07325 to BMMGA3_RS07365. Since gene deletion studies are currently not possible in B. methanolicus, two complementation experiments were performed in an arabitol negative Corynebacterium glutamicum strain using the four genes discovered via RNA-seq analysis as coding for a putative PTS for arabitol uptake (BMMGA3_RS07330, BMMGA3_RS07335, and BMMGA3_RS07340 renamed to atlABC) and a putative arabitol phosphate dehydrogenase (BMMGA3_RS07345 renamed to atlD). C. glutamicum is a natural D-arabitol utilizer that requires arabitol dehydrogenase MtlD for arabitol catabolism. The C. glutamicum mtlD deletion mutant was chosen for complementation experiments. Heterologous expression of atlABCD as well as the arabitol phosphate dehydrogenase gene atlD from B. methanolicus alone restored growth of the C. glutamicum Δ mtlD mutant with arabitol. Furthermore, D-arabitol phosphate dehydrogenase activities could be detected in crude extracts of B. methanolicus and these were higher in arabitol-grown cells than in methanol- or mannitol-grown cells. Thus, B. methanolicus possesses an arabitol inducible operon encoding, amongst others, a putative PTS system and an arabitol phosphate dehydrogenase for uptake and activation of arabitol as growth substrate.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates.

          Metabolic adaptation to the host environment is a defining feature of the pathogenicity of Mycobacterium tuberculosis (Mtb), but we lack biochemical knowledge of its metabolic networks. Many bacteria use catabolite repression as a regulatory mechanism to maximize growth by consuming individual carbon substrates in a preferred sequence and growing with diauxic kinetics. Surprisingly, untargeted metabolite profiling of Mtb growing on ¹³C-labeled carbon substrates revealed that Mtb could catabolize multiple carbon sources simultaneously to achieve enhanced monophasic growth. Moreover, when co-catabolizing multiple carbon sources, Mtb differentially catabolized each carbon source through the glycolytic, pentose phosphate, and/or tricarboxylic acid pathways to distinct metabolic fates. This unusual topologic organization of bacterial intermediary metabolism has not been previously observed and may subserve the pathogenicity of Mtb. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Calcium-dependent bacteriophage DNA infection.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              ARNold: A web tool for the prediction of Rho-independent transcription terminators

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                31 July 2019
                2019
                : 10
                : 1725
                Affiliations
                [1] 1Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University , Bielefeld, Germany
                [2] 2Department of Biotechnology and Food Science, Norwegian University of Science and Technology , Trondheim, Norway
                Author notes

                Edited by: Ilana Kolodkin-Gal, Weizmann Institute of Science, Israel

                Reviewed by: Fabian M. Commichau, University of Göttingen, Germany; Gerd M. Seibold, Technical University of Denmark, Denmark

                *Correspondence: Volker F. Wendisch, volker.wendisch@ 123456uni-bielefeld.de

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01725
                6685057
                31417519
                8d8c52b4-a743-4207-914c-a01107b9c2f1
                Copyright © 2019 López, Irla, Brito and Wendisch.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 04 April 2019
                : 12 July 2019
                Page count
                Figures: 6, Tables: 4, Equations: 0, References: 76, Pages: 14, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                bacillus methanolicus,differential transcriptome analysis,mannitol metabolism,arabitol metabolism,monophasic growth,operon organization

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content103

                Cited by10

                Most referenced authors1,701