4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neofunctionalization of a Noncoding Portion of a DNA Transposon in the Coding Region of the Chimerical Sex-Determining Gene dm-W in Xenopus Frogs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most vertebrate sex-determining genes (SDGs) emerge as neofunctionalized genes through duplication and/or mutation of ancestral genes that are involved with sexual differentiation. We previously demonstrated dm-W to be the SDG in the African clawed frog Xenopus laevis and found that a portion of this gene emerged from the masculinization gene dmrt1 after allotetraploidization by interspecific hybridization between two ancestral species around 17–18 Ma. dm-W has four exons consisting of a noncoding exon 1, dmrt1-derived exons 2 and 3, and an orphan exon 4 (Ex4) of unknown origin that includes coding sequence (CDS). In this study, we searched for the origin of Ex4 and investigated the function of the CDS of this exon. We found that the Ex4-CDS is derived from a noncoding portion of the hAT-10 family of DNA transposon. Evolutionary analysis of transposons and determination of the Ex4 sequences from three other species indicated that Ex4 was generated before the diversification of most or all extant allotetraploid species in subgenus Xenopus, during which time we hypothesize that transposase activity of this hAT superfamily was active. Using DNA–protein binding and transfection assays, we further demonstrate that the Ex4-encoded amino acid sequence increases the DNA-binding ability and transrepression activity of DM-W. These findings suggest that the conversion of the noncoding transposon sequence to the CDS of dm-W contributed to neofunctionalization of a new chimeric SDG in the ancestor of the allotetraploid Xenopus species, offering new insights into de novo origin and functional evolution of chimerical genes.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments

          Background We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing scalability. Methodology/Principal Findings Where FastTree 1 used nearest-neighbor interchanges (NNIs) and the minimum-evolution criterion to improve the tree, FastTree 2 adds minimum-evolution subtree-pruning-regrafting (SPRs) and maximum-likelihood NNIs. FastTree 2 uses heuristics to restrict the search for better trees and estimates a rate of evolution for each site (the “CAT” approximation). Nevertheless, for both simulated and genuine alignments, FastTree 2 is slightly more accurate than a standard implementation of maximum-likelihood NNIs (PhyML 3 with default settings). Although FastTree 2 is not quite as accurate as methods that use maximum-likelihood SPRs, most of the splits that disagree are poorly supported, and for large alignments, FastTree 2 is 100–1,000 times faster. FastTree 2 inferred a topology and likelihood-based local support values for 237,882 distinct 16S ribosomal RNAs on a desktop computer in 22 hours and 5.8 gigabytes of memory. Conclusions/Significance FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments. FastTree 2 is freely available at http://www.microbesonline.org/fasttree.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.

            K Katoh (2002)
            A multiple sequence alignment program, MAFFT, has been developed. The CPU time is drastically reduced as compared with existing methods. MAFFT includes two novel techniques. (i) Homo logous regions are rapidly identified by the fast Fourier transform (FFT), in which an amino acid sequence is converted to a sequence composed of volume and polarity values of each amino acid residue. (ii) We propose a simplified scoring system that performs well for reducing CPU time and increasing the accuracy of alignments even for sequences having large insertions or extensions as well as distantly related sequences of similar length. Two different heuristics, the progressive method (FFT-NS-2) and the iterative refinement method (FFT-NS-i), are implemented in MAFFT. The performances of FFT-NS-2 and FFT-NS-i were compared with other methods by computer simulations and benchmark tests; the CPU time of FFT-NS-2 is drastically reduced as compared with CLUSTALW with comparable accuracy. FFT-NS-i is over 100 times faster than T-COFFEE, when the number of input sequences exceeds 60, without sacrificing the accuracy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MUSCLE: a multiple sequence alignment method with reduced time and space complexity

              Background In a previous paper, we introduced MUSCLE, a new program for creating multiple alignments of protein sequences, giving a brief summary of the algorithm and showing MUSCLE to achieve the highest scores reported to date on four alignment accuracy benchmarks. Here we present a more complete discussion of the algorithm, describing several previously unpublished techniques that improve biological accuracy and / or computational complexity. We introduce a new option, MUSCLE-fast, designed for high-throughput applications. We also describe a new protocol for evaluating objective functions that align two profiles. Results We compare the speed and accuracy of MUSCLE with CLUSTALW, Progressive POA and the MAFFT script FFTNS1, the fastest previously published program known to the author. Accuracy is measured using four benchmarks: BAliBASE, PREFAB, SABmark and SMART. We test three variants that offer highest accuracy (MUSCLE with default settings), highest speed (MUSCLE-fast), and a carefully chosen compromise between the two (MUSCLE-prog). We find MUSCLE-fast to be the fastest algorithm on all test sets, achieving average alignment accuracy similar to CLUSTALW in times that are typically two to three orders of magnitude less. MUSCLE-fast is able to align 1,000 sequences of average length 282 in 21 seconds on a current desktop computer. Conclusions MUSCLE offers a range of options that provide improved speed and / or alignment accuracy compared with currently available programs. MUSCLE is freely available at .
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol Biol Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                July 2022
                28 June 2022
                28 June 2022
                : 39
                : 7
                : msac138
                Affiliations
                Department of Bioscience, School of Science, Kitasato University , 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
                Department of Bioscience, School of Science, Kitasato University , 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
                Department of Bioscience, School of Science, Kitasato University , 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
                Department of Bioscience, School of Science, Kitasato University , 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
                Department of Bioscience, School of Science, Kitasato University , 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
                Department of Bioscience, School of Science, Kitasato University , 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
                Department of Biology, McMaster University , Life Sciences Room 328, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
                Department of Bioscience, School of Science, Kitasato University , 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
                Department of Bioscience, School of Science, Kitasato University , 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa 252-0373, Japan
                Author notes
                Corresponding author: E-mail: ito@ 123456sci.kitasato-u.ac.jp .
                Author information
                https://orcid.org/0000-0002-9512-8845
                Article
                msac138
                10.1093/molbev/msac138
                9250109
                35763822
                8d879966-e2fa-48e5-9c9d-22e401e654bf
                © The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 12
                Categories
                Discoveries
                AcademicSubjects/SCI01130
                AcademicSubjects/SCI01180

                Molecular biology
                sex determination,transposon,chimeric gene,interspecific hybridization,frog,transcription factor

                Comments

                Comment on this article