16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A machine learning model for textured X-ray scattering and diffraction image denoising

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the advancements in instrumentations of next-generation synchrotron light sources, methodologies for small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) experiments have dramatically evolved. Such experiments have developed into dynamic and multiscale in situ characterizations, leaving prolonged exposure time as well as radiation-induced damage a serious concern. However, reduction on exposure time or dose may result in noisier images with a lower signal-to-noise ratio, requiring powerful denoising mechanisms for physical information retrieval. Here, we tackle the problem from an algorithmic perspective by proposing a small yet effective machine-learning model for experimental SAXS/WAXD image denoising, allowing more redundancy for exposure time or dose reduction. Compared with classic models developed for natural image scenarios, our model provides a bespoke denoising solution, demonstrating superior performance on highly textured SAXS/WAXD images. The model is versatile and can be applied to denoising in other synchrotron imaging experiments when data volume and image complexity is concerned.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Xception: Deep Learning with Depthwise Separable Convolutions

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.

            The discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks, such as Gaussian denoising, single image super-resolution, and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering

                Bookmark

                Author and article information

                Contributors
                Journal
                npj Computational Materials
                npj Comput Mater
                Springer Science and Business Media LLC
                2057-3960
                December 2023
                April 10 2023
                : 9
                : 1
                Article
                10.1038/s41524-023-01011-w
                8d86897a-e335-409a-b481-308a19c3e74c
                © 2023

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article