With the advancements in instrumentations of next-generation synchrotron light sources, methodologies for small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) experiments have dramatically evolved. Such experiments have developed into dynamic and multiscale in situ characterizations, leaving prolonged exposure time as well as radiation-induced damage a serious concern. However, reduction on exposure time or dose may result in noisier images with a lower signal-to-noise ratio, requiring powerful denoising mechanisms for physical information retrieval. Here, we tackle the problem from an algorithmic perspective by proposing a small yet effective machine-learning model for experimental SAXS/WAXD image denoising, allowing more redundancy for exposure time or dose reduction. Compared with classic models developed for natural image scenarios, our model provides a bespoke denoising solution, demonstrating superior performance on highly textured SAXS/WAXD images. The model is versatile and can be applied to denoising in other synchrotron imaging experiments when data volume and image complexity is concerned.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.