9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Advances on Hybrid Piezo-Triboelectric Bio-Nanogenerators: Materials, Architectures and Circuitry

      Nanoenergy Advances
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanogenerators, based on piezoelectric or triboelectric materials, have emerged in the recent years as an attractive cost-effective technology for harvesting energy from renewable and clean energy sources, but also for human sensing and biomedical wearable/implantable applications. Advances in materials engineering have enlightened new opportunities for the creation and use of novel biocompatible soft materials as well as micro/nano-structured or chemically-functionalized interfaces. Hybridization is a key concept that can be used to enhance the performances of the single devices, by coupling more transducing mechanisms in a single-integrated micro-system. It has attracted plenty of research interest due to the promising effects of signal enhancement and simultaneous adaptability to different operating conditions. This review covers and classifies the main types of hybridization of piezo-triboelectric bio-nanogenerators and it also provides an overview of the most recent advances in terms of material synthesis, engineering applications, power-management circuits and technical issues for the development of reliable implantable devices. State-of-the-art applications in the fields of energy harvesting, in vitro/in vivo biomedical sensing, implantable bioelectronics are outlined and presented. The applicative perspectives and challenges are finally discussed, with the aim to suggest improvements in the design and implementation of next-generation hybrid bio-nanogenerators and biosensors.

          Related collections

          Most cited references309

          • Record: found
          • Abstract: not found
          • Article: not found

          Flexible triboelectric generator

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Piezoelectric nanogenerators based on zinc oxide nanowire arrays.

            We have converted nanoscale mechanical energy into electrical energy by means of piezoelectric zinc oxide nanowire (NW) arrays. The aligned NWs are deflected with a conductive atomic force microscope tip in contact mode. The coupling of piezoelectric and semiconducting properties in zinc oxide creates a strain field and charge separation across the NW as a result of its bending. The rectifying characteristic of the Schottky barrier formed between the metal tip and the NW leads to electrical current generation. The efficiency of the NW-based piezoelectric power generator is estimated to be 17 to 30%. This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              On Maxwell's displacement current for energy and sensors: the origin of nanogenerators

              Zhong Wang (2017)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Nanoenergy Advances
                Nanoenergy Advances
                MDPI AG
                2673-706X
                March 2022
                February 10 2022
                : 2
                : 1
                : 64-109
                Article
                10.3390/nanoenergyadv2010004
                8d62f7b1-ba13-4a3f-856e-8b8dd8200a27
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content202

                Cited by8

                Most referenced authors3,025