38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Psychedelics and Other Psychoplastogens for Treating Mental Illness

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psychedelics have inspired new hope for treating brain disorders, as they seem to be unlike any treatments currently available. Not only do they produce sustained therapeutic effects following a single administration, they also appear to have broad therapeutic potential, demonstrating efficacy for treating depression, post-traumatic stress disorder (PTSD), anxiety disorders, substance abuse disorder, and alcohol use disorder, among others. Psychedelics belong to a more general class of compounds known as psychoplastogens, which robustly promote structural and functional neural plasticity in key circuits relevant to brain health. Here we discuss the importance of structural plasticity in the treatment of neuropsychiatric diseases, as well as the evidence demonstrating that psychedelics are among the most effective chemical modulators of neural plasticity studied to date. Furthermore, we provide a theoretical framework with the potential to explain why psychedelic compounds produce long-lasting therapeutic effects across a wide range of brain disorders. Despite their promise as broadly efficacious neurotherapeutics, there are several issues associated with psychedelic-based medicines that drastically limit their clinical scalability. We discuss these challenges and how they might be overcome through the development of non-hallucinogenic psychoplastogens. The clinical use of psychedelics and other psychoplastogenic compounds marks a paradigm shift in neuropsychiatry toward therapeutic approaches relying on the selective modulation of neural circuits with small molecule drugs. Psychoplastogen research brings us one step closer to actually curing mental illness by rectifying the underlying pathophysiology of disorders like depression, moving beyond simply treating disease symptoms. However, determining how to most effectively deploy psychoplastogenic medicines at scale will be an important consideration as the field moves forward.

          Related collections

          Most cited references294

          • Record: found
          • Abstract: found
          • Article: not found

          A neurotrophic model for stress-related mood disorders.

          There is a growing body of evidence demonstrating that stress decreases the expression of brain-derived neurotrophic factor (BDNF) in limbic structures that control mood and that antidepressant treatment reverses or blocks the effects of stress. Decreased levels of BDNF, as well as other neurotrophic factors, could contribute to the atrophy of certain limbic structures, including the hippocampus and prefrontal cortex that has been observed in depressed subjects. Conversely, the neurotrophic actions of antidepressants could reverse neuronal atrophy and cell loss and thereby contribute to the therapeutic actions of these treatments. This review provides a critical examination of the neurotrophic hypothesis of depression that has evolved from this work, including analysis of preclinical cellular (adult neurogenesis) and behavioral models of depression and antidepressant actions, as well as clinical neuroimaging and postmortem studies. Although there are some limitations, the results of these studies are consistent with the hypothesis that decreased expression of BDNF and possibly other growth factors contributes to depression and that upregulation of BDNF plays a role in the actions of antidepressant treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications.

            The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NMDA Receptor Blockade at Rest Triggers Rapid Behavioural Antidepressant Responses

              Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-d-aspartate receptor (NMDAR) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder (MDD), although the underlying mechanism is unclear 1-3 . Depressed patients report alleviation of MDD symptoms within two hours of a single low-dose intravenous infusion of ketamine with effects lasting up to two weeks 1-3 , unlike traditional antidepressants (i.e. serotonin reuptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current MDD therapies, leaving a need for faster acting antidepressants particularly for suicide-risk patients 3 . Ketamine's ability to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. We show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models that depend on rapid synthesis of brain-derived neurotrophic factor (BDNF). We find that ketamine-mediated NMDAR blockade at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII) resulting in reduced eEF2 phosphorylation and desuppression of BDNF translation. Furthermore, we find inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings suggest that protein synthesis regulation by spontaneous neurotransmission may serve as a viable therapeutic target for fast-acting antidepressant development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychiatry
                Front Psychiatry
                Front. Psychiatry
                Frontiers in Psychiatry
                Frontiers Media S.A.
                1664-0640
                04 October 2021
                2021
                : 12
                : 727117
                Affiliations
                [1] 1Neuroscience Graduate Program, University of California, Davis , Davis, CA, United States
                [2] 2Delix Therapeutics, Inc. , Concord, MA, United States
                [3] 3Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Program, University of California, Davis , Davis, CA, United States
                [4] 4Department of Chemistry, University of California, Davis , Davis, CA, United States
                [5] 5Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Sacramento , Sacramento, CA, United States
                [6] 6Center for Neuroscience, University of California, Davis , Davis, CA, United States
                Author notes

                Edited by: Graham Campbell, Hammersmith Medicines Research, United Kingdom

                Reviewed by: Petter Johnstad, Vestland fylkeskommune, Norway; Charles D. Nichols, Louisiana State University, United States; Michael James Winkelman, Arizona State University, United States

                *Correspondence: David E. Olson deolson@ 123456ucdavis.edu

                This article was submitted to Psychological Therapies, a section of the journal Frontiers in Psychiatry

                Article
                10.3389/fpsyt.2021.727117
                8520991
                34671279
                8d528990-3bb0-46e0-adec-ea639ceb6bfc
                Copyright © 2021 Vargas, Meyer, Avanes, Rus and Olson.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 June 2021
                : 06 September 2021
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 299, Pages: 19, Words: 16297
                Funding
                Funded by: National Institutes of Health, doi 10.13039/100000002;
                Award ID: R01GM128997
                Categories
                Psychiatry
                Review

                Clinical Psychology & Psychiatry
                psychoplastogen,ketamine,psilocybin,depression,neuroplasticity,prefrontal cortex,psychedelic,hallucinogenic

                Comments

                Comment on this article