11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-Term Fertilization Alters the Storage and Stability of Soil Organic Carbon in Chinese Paddy Soil

      , , , , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The storage of soil organic carbon (SOC) in cropland soils is an essential strategy that serves the dual purpose of enhancing soil fertility and mitigating climate change. However, how the stability of stored carbon is altered under long-term fertilization has not been well understood, especially in the double rice cropping system in Chinese paddy soils. In this study, we explored the SOC storage and consequent stability of SOC under long-term fertilization. The soil samples were fractionated chemically to isolate various fractions and constituent pools of SOC (i.e., very labile C/VLC, labile C/LC, less labile C/LLC, and non-labile C/NLC). The following treatments were tested: control (CK), recommended rate of inorganic fertilizer (NPK), double the amount of recommended rate of inorganic fertilizer (2NPK), and NPK combined with manure (NPKM). The results showed that, relative to the initial level, the application of NPKM significantly improved the SOC storage as compared to the control. The long-term NPKM increased the total SOC in the paddy soil and this increased SOC was mainly stored in LLC, as revealed by the highest increase (142%) over the control. Furthermore, the highest proportion of labile pool was associated with unfertilized CK, while the reverse was true for the recalcitrant pool, which was highest under NPKM. This supports the role of combining manure with NPK to improve the stability of SOC, further verified by the high recalcitrance index under NPKM (56.75% for 0–20 cm and 57.69% for 20–40 cm) as compared to the control.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

          The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A CRITICAL EXAMINATION OF A RAPID METHOD FOR DETERMINING ORGANIC CARBON IN SOILS—EFFECT OF VARIATIONS IN DIGESTION CONDITIONS AND OF INORGANIC SOIL CONSTITUENTS

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Role of the soil matrix and minerals in protecting natural organic materials against biological attack

                Bookmark

                Author and article information

                Contributors
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                June 2023
                May 25 2023
                : 13
                : 6
                : 1463
                Article
                10.3390/agronomy13061463
                8d50353d-387f-4cd7-ac5a-ad8a7b05d5d8
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article