14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      índices Climáticos Associados a Variabilidade Interanual da Produtividade de Arroz no Rio Grande do Sul Translated title: Climatic Index Associated with the Interannual Variability of Rice Yield in Rio Grande do Sul

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumo O objetivo desta pesquisa é destacar padrões climáticos que exerçam influência na variabilidade interanual da produtividade de arroz no Rio Grande do Sul (RS). Séries de produtividade de arroz de 47 municípios foram separadas em três grupos de acordo com sua produtividade (baixa, média e alta) baseado na análise de agrupamento. Correlações defasadas entre indicadores climáticos associados a padrões de teleconexão e a produtividade média de arroz de cada grupo evidenciaram a importância de cada índice para a variabilidade da produtividade da cultura no RS. Dentre os padrões de teleconexão, os que mais apresentaram correlações significativas e persistentes com a produtividade de arroz foram a Oscilação Quase Bianual (negativa), Oscilação Decadal do Pacífico (negativa), componente atmosférica (positiva) e oceânica (negativa) do fenômeno El Niño Oscilação Sul, além de anomalias de Temperatura da Superfície do Mar no Oceano Atlântico, entre 20° S-30° S e 20° O-40° O, (correlação negativa). A influência de alguns dos indicadores climáticos apresentados neste estudo ainda não havia sido discutida do ponto de vista agrícola e os resultados apresentados podem fornecer informações cruciais na tomada de decisões e na previsão de safra de arroz no Rio Grande do Sul.

          Translated abstract

          Abstract The main of this work is to highlight climatic patterns that influence the interannual variability of rice yield in Rio Grande do Sul (RS). Series of rice yield data from 47 municipalities were separated into three groups according to their yield (low, medium and high) based on clustering analysis. Lag correlations between climatic indicators associated with teleconnections patterns and mean rice yield of each group evidenced the importance of each index for variability of the yield in RS. The most significant and persistent correlations with rice yield were the Quasi-Biennial Oscillation (negative), the Pacific Decadal Oscillation (negative) an atmospheric (positive) and oceanic (negative) components of the El Niño Southern Oscillation. In addition, Sea Surface Temperature anomalies in the Atlantic Ocean, between 20° S-30° S and 20° O-40° W (negative correlation) have a significant correlation with the rice yield. The influence of some of the climate indices had not yet been discussed from the agricultural point of view. These results can be a crucial information in decision-making and rice yield forecast in Rio Grande do Sul.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          The Definition of El Niño

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            An oscillation in the global climate system of period 65–70 years

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Climate variation explains a third of global crop yield variability

              Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.
                Bookmark

                Author and article information

                Journal
                rbmet
                Revista Brasileira de Meteorologia
                Rev. bras. meteorol.
                Sociedade Brasileira de Meteorologia (São Paulo, SP, Brazil )
                0102-7786
                1982-4351
                June 2020
                : 35
                : 2
                : 209-218
                Affiliations
                [2] Santa Maria Rio Grande do Sul orgnameUniversidade Federal de Santa Maria orgdiv1Departamento de Física Brazil
                [3] Santa Maria Rio Grande do Sul orgnameUniversidade Federal de Santa Maria orgdiv1Departamento de Fitotecnia Brazil
                [4] Santo André São Paulo orgnameUniversidade Federal do ABC Brazil
                [5] Porto Alegre RS orgnameInstituto Rio Grandense do Arroz Brasil
                [1] Cachoeira Paulista SP orgnameCentro de Previsão de Tempo e Estudos Climáticos orgdiv1Instituto Nacional de Pesquisas Espaciais Brasil
                Article
                S0102-77862020000200209 S0102-7786(20)03500200209
                10.1590/0102-7786351033
                8d26148c-687d-4120-94ed-fa3140fcc1cd

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 31 October 2018
                : 18 February 2018
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 44, Pages: 10
                Product

                SciELO Brazil

                Categories
                Artigos

                teleconnectionpattern,Oryza sativa,interanual variability,padrões de teleconexão,variabilidade interanual

                Comments

                Comment on this article