8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tissue-Related Hypoxia Attenuates Proinflammatory Effects of Allogeneic PBMCs on Adipose-Derived Stromal Cells In Vitro

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human adipose tissue-stromal derived cells (ASCs) are considered a perspective tool for regenerative medicine. Depending on the application mode ASC/allogeneic immune cell interaction can occur in the systemic circulation under plenty high concentrations of O 2 and in target tissues at lower O 2 levels. Here we examined the effects of allogeneic PHA-stimulated peripheral blood mononuclear cells (PBMCs) on ASCs under ambient (20%) oxygen and “physiological” hypoxia (5% O 2). As revealed with microarray analysis ASCs under 20% O 2 were more affected by activated PBMCs, which was manifested in differential expression of more than 300 genes, whereas under 5% O 2 only 140 genes were changed. Altered gene pattern was only partly overlapped at different O 2 conditions. Under O 2 ASCs retained their proliferative and differentiative capacities, mesenchymal phenotype, and intracellular organelle' state. ASCs were proinflammatory activated on transcription level that was confirmed by their ability to suppress activation and proliferation of mitogen-stimulated PBMCs. ASC/PBMCs interaction resulted in anti-inflammatory shift of paracrine mediators in conditioning medium with significant increase of immunosuppressive LIF level. Our data indicated that under both ambient and tissue-related O 2 ASCs possessed immunosuppressive potential and maintained functional activity. Under “physiological” hypoxia ASCs were less susceptible to “priming” by allogeneic mitogen-activated PBMCs.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression.

          Cell-cell adhesion mediated by ICAM-1 and VCAM-1 is critical for T cell activation and leukocyte recruitment to the inflammation site and, therefore, plays an important role in evoking effective immune responses. However, we found that ICAM-1 and VCAM-1 were critical for mesenchymal stem cell (MSC)-mediated immunosuppression. When MSCs were cocultured with T cells in the presence of T cell Ag receptor activation, they significantly upregulated the adhesive capability of T cells due to the increased expression of ICAM-1 and VCAM-1. By comparing the immunosuppressive effect of MSCs toward various subtypes of T cells and the expression of these adhesion molecules, we found that the greater expression of ICAM-1 and VCAM-1 by MSCs, the greater the immunosuppressive capacity that they exhibited. Furthermore, ICAM-1 and VCAM-1 were found to be inducible by the concomitant presence of IFN-gamma and inflammatory cytokines (TNF-alpha or IL-1). Finally, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo when the adhesion molecules were genetically deleted or functionally blocked, which corroborated the importance of cell-cell contact in immunosuppression by MSCs. Taken together, these findings reveal a novel function of adhesion molecules in immunoregulation by MSCs and provide new insights for the clinical studies of antiadhesion therapies in various immune disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunogenicity of allogeneic mesenchymal stem cells

            Mesenchymal stem cells (MSCs) inhibit proliferation of allogeneic T cells and express low levels of major histocompatibility complex class I (MHCI), MHCII and vascular adhesion molecule-1 (VCAM-1). We investigated whether their immunosuppressive properties and low immunophenotype protect allogeneic rat MSCs against cytotoxic lysis in vitro and result in a reduced immune response in vivo. Rat MSCs were partially protected against alloantigen-specific cytotoxic T cells in vitro. However, after treatment with IFN-γ and IL-1β, MSCs upregulated MHCI, MHCII and VCAM-1, and cytotoxic lysis was significantly increased. In vivo, allogeneic T cells but not allogeneic MSCs induced upregulation of the activation markers CD25 and CD71 as well as downregulation of CD62L on CD4+ T cells from recipient rats. However, intravenous injection of allo-MSCs in rats led to the formation of alloantibodies with the capacity to facilitate complement-mediated lysis, although IgM levels were markedly decreased compared with animals that received T cells. The allo-MSC induced immune response was sufficient to lead to significantly reduced survival of subsequently injected allo-MSCs. Interestingly, no increased immunogenicity of IFN-γ stimulated allo-MSCs was observed in vivo. Both the loss of protection against cytotoxic lysis under inflammatory conditions and the induction of complement-activating antibodies will likely impact the utility of allogeneic MSCs for therapeutic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells.

              We recently reported the isolation of a unique subpopulation of human stromal cells from bone marrow (BM) termed marrow-isolated adult multilineage inducible (MIAMI) cells, capable of differentiating in vitro into mature-like cells from all three germ layers. The oxygen tension (pO2) in BM ranges from 1 to 7%, which prompted us to examine the role of pO2 in regulating the capacity of MIAMI cells both to self-renew and maintain their pluripotentiality (stemness) or to progress toward osteoblastic differentiation. MIAMI cells were grown under low-pO2 conditions (1, 3, 5, and 10% oxygen) or air (21% oxygen). The proliferation rate of cells exposed to 3% oxygen (3 days) increased, resulting in cell numbers more than threefold higher than those of cells exposed to air (at 7 days). In cells grown under osteoblastic differentiation conditions, the expression of the osteoblastic markers osteocalcin, bone sialoprotein, osterix, and Runx2 and alkaline phosphatase activity was upregulated when incubated in air; however, it was blocked at low (3%) pO2. Similarly, biomineralization of long-term cell cultures was high under osteoblastic differentiation conditions in air but was undetectable at low (3%) pO2. In contrast, low pO2 upregulated mRNAs for OCT-4, REX-1, telomerase reverse transcriptase, and hypoxia-inducible factor-1 alpha, and increased the expression of SSEA-4 compared to air. Moreover, the expression of embryonic stem cell markers was sustained even under osteogenic culture conditions. Similar results were obtained using commercially available marrow stromal cells. We hypothesize a physiological scenario in which primitive MIAMI cells self-renew while localized to areas of low pO2 in the bone marrow, but tend to differentiate toward osteoblasts when they are located closer to blood vessels and exposed to higher pO2. Our results strongly suggest that maintaining developmentally primitive human cells in vitro at low pO2 would be more physiological and favor stemness over differentiation.
                Bookmark

                Author and article information

                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi Publishing Corporation
                1687-966X
                1687-9678
                2016
                6 January 2016
                : 2016
                : 4726267
                Affiliations
                Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, Moscow 123007, Russia
                Author notes
                *Elena R. Andreeva: andreeva_er@ 123456mail.ru

                Academic Editor: Luca Vanella

                Article
                10.1155/2016/4726267
                4736565
                26880965
                8d0c085d-62a0-437b-8957-a3e78246826c
                Copyright © 2016 Polina I. Bobyleva et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 June 2015
                : 3 December 2015
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article