31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The susceptibility of Aedes aegypti populations displaying temephos resistance to Bacillus thuringiensis israelensis: a basis for management

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Aedes aegypti is the vector of dengue virus, and its control is essential to prevent disease transmission. Among the agents available to control this species, biolarvicides based on Bacillus thuringiensis serovar israelensis (Bti) are an effective alternative to replace the organophosphate temephos for controlling populations that display resistance to this insecticide. The major goal of this study was to determine the baseline susceptibility of Brazilian Ae. aegypti populations to Bti, taking into account their background in terms of larvicide exposure, status of temephos resistance and the level of activity of detoxifying enzymes involved in metabolic resistance to insecticides.

          Methods

          Population samples were established under insectarium conditions. Larval susceptibility to temephos and Bti was evaluated through bioassays and lethal concentrations of these compounds were determined. Biochemical assays were performed to determine the specific activity of five detoxifying enzymes in these samples.

          Results

          Fourteen populations were characterized and, except for one case, all displayed resistance to temephos. Most populations were classified as highly resistant. The populations also showed increased activity of one or more detoxifying enzymes (glutathione-S-transferases, esterases and mixed function oxidases), regardless of their temephos resistance status. All populations analyzed were susceptible to Bti, and the lethal concentrations were similar to those detected in two laboratory susceptible colonies. The response to Bti showed little variation. A maximum resistance ratio of 2.1 was observed in two untreated populations, while in two Bti-treated populations, the maximum resistance ratio was 1.9. No positive correlation was found between temephos resistance, increased activity of detoxifying enzymes, and susceptibility to Bti.

          Conclusions

          Data from this study show that all populations were susceptible to Bti, including twelve untreated and two treated populations that had been exposed to this agent for more than ten years. The temephos resistance and increased activity of detoxifying enzymes observed in thirteen populations was not correlated with changes in susceptibility to Bti. Our data show a lack of cross-resistance between these two compounds; thus, Bti can be used in an integrated control program to fight Ae. aegypti and counteract the temephos resistance that was found among all populations analyzed.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          The molecular basis of insecticide resistance in mosquitoes.

          Insecticide resistance is an inherited characteristic involving changes in one or more insect gene. The molecular basis of these changes are only now being fully determined, aided by the availability of the Drosophila melanogaster and Anopheles gambiae genome sequences. This paper reviews what is currently known about insecticide resistance conferred by metabolic or target site changes in mosquitoes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biochemistry and genetics of insect resistance to Bacillus thuringiensis.

            Bacillus thuringiensis (Bt) is a valuable source of insecticidal proteins for use in conventional sprayable formulations and in transgenic crops, and it is the most promising alternative to synthetic insecticides. However, evolution of resistance in insect populations is a serious threat to this technology. So far, only one insect species has evolved significant levels of resistance in the field, but laboratory selection experiments have shown the high potential of other species to evolve resistance against Bt. We have reviewed the current knowledge on the biochemical mechanisms and genetics of resistance to Bt products and insecticidal crystal proteins. The understanding of the biochemical and genetic basis of resistance to Bt can help design appropriate management tactics to delay or reduce the evolution of resistance in insect populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Insecticide resistance in Aedes aegypti populations from Ceará, Brazil

              Background Organophosphates and pyrethroids are used widely in Brazil to control Aedes aegypti, the main vector of dengue viruses, under the auspices of the National Programme for Dengue Control. Resistance to these insecticides is widespread throughout Brazil. In Ceará the vector is present in 98% of districts and resistance to temephos has been reported previously. Here we measure resistance to temephos and the pyrethroid cypermethrin in three populations from Ceará and use biochemical and molecular assays to characterise resistance mechanisms. Results Resistance to temephos varied widely across the three studied populations, with resistance ratios (RR95) of 7.2, 30 and 192.7 in Juazeiro do Norte, Barbalha and Crato respectively. The high levels of resistance detected in Barbalha and Crato (RR95 ≥ 30) imply a reduction of temephos efficacy, and indeed in simulated field tests reduced effectiveness was observed for the Barbalha population. Two populations (Crato and Barbalha) were also resistant to cypermethrin, whilst Juazeiro do Norte showed only an altered susceptibility. The Ile1011Met kdr mutation was detected in all three populations and Val1016Ile in Crato and Juazeiro do Norte. 1011Met was significantly associated with resistance to cypermethrin in the Crato population. Biochemical tests showed that only the activity of esterases and GSTs, among the tested detoxification enzymes, was altered in these populations when compared with the Rockefeller strain. Conclusions Our results demonstrate that two A. aegypti populations from Ceará are under strong selection pressure by temephos, compromising the field effectiveness of this organophosphate. Our results also provide evidence that the process of reducing resistance to this larvicide in the field is difficult and slow and may require more than seven years for reversal. In addition, we show resistance to cypermethrin in two of the three populations studied, and for the first time the presence of the allele 1016Ile in mosquito populations from northeastern Brazil. A significant association between 1011Met and resistance was observed in one of the populations. Target-site mechanisms seem not to be implicated in temephos resistance, reinforcing the idea that for the studied populations, detoxification enzymes most likely play a major role in the resistance to this insecticide.
                Bookmark

                Author and article information

                Contributors
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2013
                13 October 2013
                : 6
                : 297
                Affiliations
                [1 ]Department of Entomology, Centro de Pesquisas Aggeu Magalhães-FIOCRUZ, Recife, PE 50670-420, Brazil
                Article
                1756-3305-6-297
                10.1186/1756-3305-6-297
                3852962
                24499507
                8d06159a-9ae3-457a-ad5b-2c1d208cd29a
                Copyright © 2013 Araújo et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 August 2013
                : 8 October 2013
                Categories
                Research

                Parasitology
                vector control,bti,susceptibility,temephos,metabolic resistance,cross-resistance
                Parasitology
                vector control, bti, susceptibility, temephos, metabolic resistance, cross-resistance

                Comments

                Comment on this article