21
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel High-throughput Approach for Purification of Infectious Virions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Viruses are extensively studied as pathogens and exploited as molecular tools and therapeutic agents. Existing methods to purify viruses such as gradient ultracentrifugation or chromatography have limitations, for example demand for technical expertise or specialized equipment, high time consumption, and restricted capacity. Our laboratory explores mutations in oncolytic reovirus that could improve oncolytic activity, and makes routine use of numerous virus variants, genome reassortants, and reverse engineered mutants. Our research pace was limited by the lack of high-throughput virus purification methods that efficiently remove confounding cellular contaminants such as cytokines and proteases. To overcome this shortcoming, we evaluated a commercially available resin (Capto Core 700) that captures molecules smaller than 700 kDa. Capto. Core 700 chromatography produced virion purity and infectivity indistinguishable from CsCl density gradient ultracentrifugation as determined by electron microscopy, gel electrophoresis analysis and plaque titration. Capto Core 700 resin was then effectively adapted to a rapid in-slurry pull-out approach for high-throughput purification of reovirus and adenovirus. The in-slurry purification approach offered substantially increased virus purity over crude cell lysates, media, or high-spin preparations and would be especially useful for high-throughput virus screening applications where density gradient ultracentrifugation is not feasible.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A Plasmid-Based Reverse Genetics System for Animal Double-Stranded RNA Viruses

          Summary Mammalian orthoreoviruses (reoviruses) are highly tractable experimental models for studies of double-stranded (ds) RNA virus replication and pathogenesis. Reoviruses infect respiratory and intestinal epithelium and disseminate systemically in newborn animals. Until now, a strategy to rescue infectious virus from cloned cDNA has not been available for any member of the Reoviridae family of dsRNA viruses. We report the generation of viable reovirus following plasmid transfection of murine L929 (L) cells using a strategy free of helper virus and independent of selection. We used the reovirus reverse genetics system to introduce mutations into viral capsid proteins σ1 and σ3 and to rescue a virus that expresses a green fluorescent protein (GFP) transgene, thus demonstrating the tractability of this technology. The plasmid-based reverse genetics approach described here can be exploited for studies of reovirus replication and pathogenesis and used to develop reovirus as a vaccine vector.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ras transformation mediates reovirus oncolysis by enhancing virus uncoating, particle infectivity, and apoptosis-dependent release.

            Reovirus, a potential cancer therapy, replicates more efficiently in Ras-transformed cells than in non-transformed cells. It was presumed that increased translation was the mechanistic basis of reovirus oncolysis. Analyses of each step of the reovirus life cycle now show that cellular processes deregulated by Ras transformation promote not one but three viral replication steps. First, in Ras-transformed cells, proteolytic disassembly (uncoating) of the incoming virions, required for onset of infection, occurs more efficiently. Consequently, threefold more Ras-transformed cells become productively infected with reovirus than non-transformed cells, which accounts for the observed increase of reovirus proteins in Ras-transformed cells. Second, Ras transformation increases the infectious-to-noninfectious virus particle ratio, as virions purified from Ras-transformed cells are fourfold more infectious than those purified from non-transformed cells. Progeny assembled in non- and Ras-transformed cells appear similar by electron microscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, suggesting that Ras transformation introduces a subtle change necessary for virus infectivity. Finally, reovirus release, mediated by caspase-induced apoptosis, is ninefold more efficient in Ras-transformed cells. The combined effects of enhanced virus uncoating, infectivity, and release result in >100-fold differences in virus titers within one round of replication. Our analysis reveals previously unrecognized mechanisms by which Ras transformation mediates selective viral oncolysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An improved reverse genetics system for mammalian orthoreoviruses.

              Mammalian orthoreoviruses (reoviruses) are highly useful models for studies of double-stranded RNA virus replication and pathogenesis. We previously developed a strategy to recover prototype reovirus strain T3D from cloned cDNAs transfected into murine L929 fibroblast cells. Here, we report the development of a second-generation reovirus reverse genetics system featuring several major improvements: (1) the capacity to rescue prototype reovirus strain T1L, (2) reduction of required plasmids from 10 to 4, and (3) isolation of recombinant viruses following transfection of baby hamster kidney cells engineered to express bacteriophage T7 RNA polymerase. The efficiency of virus rescue using the 4-plasmid strategy was substantially increased in comparison to the original 10-plasmid system. We observed full compatibility of T1L and T3D rescue vectors when intermixed to produce a panel of T1LxT3D monoreassortant viruses. Improvements to the reovirus reverse genetics system enhance its applicability for studies of reovirus biology and clinical use. Copyright 2009 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 November 2016
                2016
                : 6
                : 36826
                Affiliations
                [1 ]Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta, Canada
                [2 ]GE Healthcare, LifeSciences, Marlborough , MA, US
                [3 ]Department of Oncology, University of Alberta , Edmonton, Alberta, Canada
                [4 ]Department of Microbiology and Immunology, Dalhousie University , Halifax, Nova Scotia, Canada
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep36826
                10.1038/srep36826
                5101806
                27827454
                8d03f2c1-95cf-4cc8-8e2a-0e50fe8f108a
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 June 2016
                : 21 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article