3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Selenium alleviates cadmium-induced oxidative stress, endoplasmic reticulum stress and programmed necrosis in chicken testes

      , , , , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found

          Regulated necrosis: the expanding network of non-apoptotic cell death pathways.

          Cell death research was revitalized by the understanding that necrosis can occur in a highly regulated and genetically controlled manner. Although RIPK1 (receptor-interacting protein kinase 1)- and RIPK3-MLKL (mixed lineage kinase domain-like)-mediated necroptosis is the most understood form of regulated necrosis, other examples of this process are emerging, including cell death mechanisms known as parthanatos, oxytosis, ferroptosis, NETosis, pyronecrosis and pyroptosis. Elucidating how these pathways of regulated necrosis are interconnected at the molecular level should enable this process to be therapeutically targeted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of ROS production and oxidative stress in diabetes.

            Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Necroptosis in health and diseases.

              Necroptosis is a form of regulated necrosis that can be activated by ligands of death receptors and stimuli that induce the expression of death receptor ligands under apoptotic deficient conditions. Activation of necroptosis by ligands of death receptors requires the kinase activity of RIP1, which mediates the activation of RIP3 and MLKL, two critical downstream mediators of necroptosis. Blocking the kinase activity of RIP1, a key druggable target in the necroptosis pathway, by necrostatins inhibits the activation of necroptosis and allows cell survival and proliferation in the presence of death receptor ligands. The activation of necroptosis is modulated by different forms of ubiquitination, including K63, linear and K48 ubiquitination, as well as phosphorylation of RIP1, RIP3 and MLKL. Necroptosis is suppressed by caspase-8/FADD-mediated apoptosis. Deficiency in caspase-8 and FADD leads to embryonic lethality, tissue degeneration and inflammation which can be suppressed by inhibition of RIP1 kinase and RIP3. On the other hand, the lack of RIP3 kinase activity leads to early embryonic lethality which can be suppressed by the loss of caspase-8, suggesting that although the kinase activity of RIP3 is involved in mediating necroptosis, the basal activity of RIP3 kinase may be required for suppressing caspase-8 mediated apoptosis. Necroptosis as well as RIP1- and RIP3-mediated inflammatory response have been implicated in mediating multiple human diseases including TNF-mediated hypothermia and systemic inflammation, ischemic reperfusion injury, neurodegeneration, Gaucher's disease, progressive atherosclerotic lesions, etc. Targeting RIP1 kinase may provide therapeutic benefits for the treatment of human diseases characterized by necrosis and inflammation.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                March 2023
                March 2023
                : 863
                : 160601
                Article
                10.1016/j.scitotenv.2022.160601
                36528095
                8cdd43ec-a20f-4301-95e8-25831e5766d0
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article