7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle

      ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quercetin, an essential plant flavonoid, possesses a variety of pharmacological activities. Extensive literature investigates its antimicrobial activity and possible mechanism of action. Quercetin has been shown to inhibit the growth of different Gram-positive and Gram-negative bacteria as well as fungi and viruses. The mechanism of its antimicrobial action includes cell membrane damage, change of membrane permeability, inhibition of synthesis of nucleic acids and proteins, reduction of expression of virulence factors, mitochondrial dysfunction, and preventing biofilm formation. Quercetin has also been shown to inhibit the growth of various drug-resistant microorganisms, thereby suggesting its use as a potent antimicrobial agent against drug-resistant strains. Furthermore, certain structural modifications of quercetin have sometimes been shown to enhance its antimicrobial activity compared to that of the parent molecule. In this review, we have summarized the antimicrobial activity of quercetin with a special focus on its mechanistic principle. Therefore, this review will provide further insights into the scientific understanding of quercetin’s mechanism of action, and the implications for its use as a clinically relevant antimicrobial agent.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial activity of flavonoids

          Flavonoids are ubiquitous in photosynthesising cells and are commonly found in fruit, vegetables, nuts, seeds, stems, flowers, tea, wine, propolis and honey. For centuries, preparations containing these compounds as the principal physiologically active constituents have been used to treat human diseases. Increasingly, this class of natural products is becoming the subject of anti-infective research, and many groups have isolated and identified the structures of flavonoids possessing antifungal, antiviral and antibacterial activity. Moreover, several groups have demonstrated synergy between active flavonoids as well as between flavonoids and existing chemotherapeutics. Reports of activity in the field of antibacterial flavonoid research are widely conflicting, probably owing to inter- and intra-assay variation in susceptibility testing. However, several high-quality investigations have examined the relationship between flavonoid structure and antibacterial activity and these are in close agreement. In addition, numerous research groups have sought to elucidate the antibacterial mechanisms of action of selected flavonoids. The activity of quercetin, for example, has been at least partially attributed to inhibition of DNA gyrase. It has also been proposed that sophoraflavone G and (−)-epigallocatechin gallate inhibit cytoplasmic membrane function, and that licochalcones A and C inhibit energy metabolism. Other flavonoids whose mechanisms of action have been investigated include robinetin, myricetin, apigenin, rutin, galangin, 2,4,2′-trihydroxy-5′-methylchalcone and lonchocarpol A. These compounds represent novel leads, and future studies may allow the development of a pharmacologically acceptable antimicrobial agent or class of agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid

            Antioxidants are substances that may protect cells from the damage caused by unstable molecules such as free radicals. Flavonoids are phenolic substances widely found in fruits and vegetables. The previous studies showed that the ingestion of flavonoids reduces the risk of cardiovascular diseases, metabolic disorders, and certain types of cancer. These effects are due to the physiological activity of flavonoids in the reduction of oxidative stress, inhibiting low-density lipoproteins oxidation and platelet aggregation, and acting as vasodilators in blood vessels. Free radicals are constantly generated resulting in extensive damage to tissues leading to various disease conditions such as cancer, Alzheimer's, renal diseases, cardiac abnormalities, etc., Medicinal plants with antioxidant properties play a vital functions in exhibiting beneficial effects and employed as an alternative source of medicine to mitigate the disease associated with oxidative stress. Flavonoids have existed over one billion years and possess wide spectrum of biological activities that might be able to influence processes which are dysregulated in a disease. Quercetin, a plant pigment is a potent antioxidant flavonoid and more specifically a flavonol, found mostly in onions, grapes, berries, cherries, broccoli, and citrus fruits. It is a versatile antioxidant known to possess protective abilities against tissue injury induced by various drug toxicities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Flavonoid Bioavailability and Attempts for Bioavailability Enhancement

              Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                April 2022
                April 12 2022
                : 27
                : 8
                : 2494
                Article
                10.3390/molecules27082494
                35458691
                8cd561e0-ab6c-4440-8919-5665a10d89bd
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article