1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High Triglyceride-Glucose Index with Renal Hyperfiltration and Albuminuria in Young Adults: The Korea National Health and Nutrition Examination Survey (KNHANES V, VI, and VIII)

      , , , , , ,
      Journal of Clinical Medicine
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: High triglyceride-glucose (TyG) index, a surrogate marker of insulin resistance, is associated with an increased risk of albuminuria in adults. However, the relationship between high TyG index associated with renal hyperfiltration (RHF) and albuminuria among young adults is unclear. Methods: A total of 5420 participants aged 19–39 years were enrolled from the Korean National Health and Nutrition Examination Survey (2011–2014 and 2019) and their TyG index levels were analyzed. RHF was defined as eGFR with residuals > 90th percentile after adjusting for age, sex, weight, and height. Albuminuria was defined as urinary albumin-to-creatinine ratio ≥ 30 mg/g Cr. Logistic regression analyses were used to evaluate the association between TyG index, RHF, and albuminuria. Results: The mean age was 30.7 ± 6.0 years and 46.4% were male. The prevalence of albuminuria and RHF was higher in the higher tertiles of TyG index. In our multivariable model, high TyG index showed higher risk of albuminuria (odds ratio (OR) per 1.0 increase in TyG index, 1.56; 95% confidence interval (CI), 1.24–1.95 and OR in the highest tertile, 1.65; 95% CI, 1.08–2.52). High TyG index was associated with higher risk of RHF (OR per 1.0 increase in TyG index, 1.56; 95% CI, 1.32–1.84 and OR in the highest tertile, 1.73; 95% CI, 1.31–2.30). When participants were divided into with or without RHF, high-TyG index-associated high risk of albuminuria was only observed in those with RHF. Participants with concurrent high TyG index and RHF showed the highest risk of albuminuria. Mediation analysis showed that 54.2% of the relation between TyG index and albuminuria was mediated by RHF (95% CI of indirect effect, 0.27–0.76). Finally, incorporating TyG index into our basic model improved the predictive value for albuminuria only in participants with RHF. Conclusion: High TyG index associated with RHF was the strongest risk factor for albuminuria in this study. Early identification of high TyG index with RHF may prevent future development of CKD in relatively healthy and young adults.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017

          Summary Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating glomerular filtration rate from serum creatinine and cystatin C.

            Estimates of glomerular filtration rate (GFR) that are based on serum creatinine are routinely used; however, they are imprecise, potentially leading to the overdiagnosis of chronic kidney disease. Cystatin C is an alternative filtration marker for estimating GFR. Using cross-sectional analyses, we developed estimating equations based on cystatin C alone and in combination with creatinine in diverse populations totaling 5352 participants from 13 studies. These equations were then validated in 1119 participants from 5 different studies in which GFR had been measured. Cystatin and creatinine assays were traceable to primary reference materials. Mean measured GFRs were 68 and 70 ml per minute per 1.73 m(2) of body-surface area in the development and validation data sets, respectively. In the validation data set, the creatinine-cystatin C equation performed better than equations that used creatinine or cystatin C alone. Bias was similar among the three equations, with a median difference between measured and estimated GFR of 3.9 ml per minute per 1.73 m(2) with the combined equation, as compared with 3.7 and 3.4 ml per minute per 1.73 m(2) with the creatinine equation and the cystatin C equation (P=0.07 and P=0.05), respectively. Precision was improved with the combined equation (interquartile range of the difference, 13.4 vs. 15.4 and 16.4 ml per minute per 1.73 m(2), respectively [P=0.001 and P 30% of measured GFR, 8.5 vs. 12.8 and 14.1, respectively [P<0.001 for both comparisons]). In participants whose estimated GFR based on creatinine was 45 to 74 ml per minute per 1.73 m(2), the combined equation improved the classification of measured GFR as either less than 60 ml per minute per 1.73 m(2) or greater than or equal to 60 ml per minute per 1.73 m(2) (net reclassification index, 19.4% [P<0.001]) and correctly reclassified 16.9% of those with an estimated GFR of 45 to 59 ml per minute per 1.73 m(2) as having a GFR of 60 ml or higher per minute per 1.73 m(2). The combined creatinine-cystatin C equation performed better than equations based on either of these markers alone and may be useful as a confirmatory test for chronic kidney disease. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects.

              Because the insulin test is expensive and is not available in most laboratories in the cities of undeveloped countries, we tested whether the product of fasting triglycerides and glucose levels (TyG) is a surrogate for estimating insulin resistance compared with the homeostasis model assessment of insulin resistance (HOMA-IR) index. We performed a population-based cross-sectional study. Sampling strategy was based on a randomized two-stage cluster sampling procedure. Only apparently healthy subjects, men and nonpregnant women aged 18-65 years, with newly diagnosed impaired fasting glucose (IFG), impaired glucose tolerance (IGT), or IFG + IGT were enrolled. Renal disease, malignancy, and diabetes were exclusion criteria. Sensitivity, specificity, predictive values, and the probability of disease given a positive test were calculated. The optimal TyG index for estimating insulin resistance was established using a receiver operating characteristic scatter plot analysis. A total of 748 apparently healthy subjects aged 41.4 +/- 11.2 years were enrolled. Insulin resistance was identified in 241 (32.2%) subjects (HOMA-IR index 4.4 +/- 1.6). New diagnoses of IFG, IGT, and IFG + IGT were established in 145 (19.4%), 54 (7.2%), and 75 (10.0%) individuals. respectively. The best TyG index for diagnosis of insulin resistance was Ln 4.65, which showed the highest sensitivity (84.0%) and specificity (45.0%) values. The positive and negative predictive values were 81.1% and 84.8%, and the probability of disease, given a positive test, was 60.5%. The TyG index could be useful as surrogate to identify insulin resistance in apparently healthy subjects.
                Bookmark

                Author and article information

                Contributors
                Journal
                JCMOHK
                Journal of Clinical Medicine
                JCM
                MDPI AG
                2077-0383
                November 2022
                October 29 2022
                : 11
                : 21
                : 6419
                Article
                10.3390/jcm11216419
                36362646
                8cab1e34-26d3-41ba-b3c2-c54e10714b64
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article