5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Women show similar central and peripheral fatigue to men after half-marathon

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The biomechanics of running.

          This review article summarizes the current literature regarding the analysis of running gait. It is compared to walking and sprinting. The current state of knowledge is presented as it fits in the context of the history of analysis of movement. The characteristics of the gait cycle and its relationship to potential and kinetic energy interactions are reviewed. The timing of electromyographic activity is provided. Kinematic and kinetic data (including center of pressure measurements, raw force plate data, joint moments, and joint powers) and the impact of changes in velocity on these findings is presented. The status of shoewear literature, alterations in movement strategies, the role of biarticular muscles, and the springlike function of tendons are addressed. This type of information can provide insight into injury mechanisms and training strategies. Copyright 1998 Elsevier Science B.V.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sex differences in human fatigability: mechanisms and insight to physiological responses.

            S K Hunter (2014)
            Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigability include the type, intensity and speed of contraction, the muscle group assessed and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neurone pool from cortical and subcortical regions, synaptic inputs to the motor neurone pool via activation of metabolically sensitive small afferent fibres in the muscle, muscle perfusion and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasizes the need to understand sex-based differences in fatigability to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Relevance of Sex Differences in Performance Fatigability.

              Performance fatigability differs between men and women for a range of fatiguing tasks. Women are usually less fatigable than men, and this is most widely described for isometric fatiguing contractions and some dynamic tasks. The sex difference in fatigability is specific to the task demands so that one mechanism is not universal, including any sex differences in skeletal muscle physiology, muscle perfusion, and voluntary activation. However, there are substantial knowledge gaps about the task dependency of the sex differences in fatigability, the involved mechanisms, and the relevance to clinical populations and with advanced age. The knowledge gaps are in part due to the significant deficits in the number of women included in performance fatigability studies despite a gradual increase in the inclusion of women for the last 20 yr. Therefore, this review 1) provides a rationale for the limited knowledge about sex differences in performance fatigability, 2) summarizes the current knowledge on sex differences in fatigability and the potential mechanisms across a range of tasks, 3) highlights emerging areas of opportunity in clinical populations, and 4) suggests strategies to close the knowledge gap and understanding the relevance of sex differences in performance fatigability. The limited understanding about sex differences in fatigability in healthy and clinical populations presents as a field ripe with opportunity for high-impact studies. Such studies will inform on the limitations of men and women during athletic endeavors, ergonomic tasks, and daily activities. Because fatigability is required for effective neuromuscular adaptation, sex differences in fatigability studies will also inform on optimal strategies for training and rehabilitation in both men and women.
                Bookmark

                Author and article information

                Journal
                European Journal of Sport Science
                European Journal of Sport Science
                Informa UK Limited
                1746-1391
                1536-7290
                February 24 2018
                May 28 2018
                March 2018
                May 28 2018
                : 18
                : 5
                : 695-704
                Affiliations
                [1 ] NeuroMuscularFunction Research Group, School of Exercise & Sport Sciences,Department of Medical Sciences, University of Turin, Turin, Italy
                [2 ] CeRiSM Research Center for Sport, Mountain, and Health, Rovereto, Italy
                [3 ] Department of Neurosciences, Biomedicine and Movement Sciences, School of Sport and Exercise Sciences, University of Verona, Verona, Italy
                [4 ] Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
                Article
                10.1080/17461391.2018.1442500
                29490592
                8ca0c515-28ea-48dd-8613-38f168f94457
                © 2018
                History

                Comments

                Comment on this article