1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microneedles: a novel strategy for wound management

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wound management is a serious concern worldwide, inflicting a huge social and economic burden on patients and healthcare systems, and research into efficient wound-management measures is crucial.

          Abstract

          Wound management is a serious concern worldwide, inflicting a huge social and economic burden on patients and healthcare systems, and research into efficient wound-management measures is crucial. Although advances have been made in traditional wound dressings for wound management to date, the complicated environment near the wound leads to inadequate drug absorption for achieving the intended therapeutic impact. Microneedles, a novel transdermal drug delivery method, can improve wound-healing efficacy by breaking down the barriers at the wound site and enhancing drug delivery efficiency. In recent years, there have been many advanced types of research on the application of microneedles to wound management to address the difficulties encountered in the wound-healing process. This article summarizes and analyzes these research efforts, classifying them according to their distinct efficacy, and addresses them in five areas: hemostasis, antibacterial effects, proliferation, anti-scar, and wound monitoring. The article concludes with a review of the current state and limitations of microneedle patches and an outlook on the future direction of microneedles in wound management as a way to inspire more efficient and smarter wound-management strategies.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Wound repair and regeneration.

          The repair of wounds is one of the most complex biological processes that occur during human life. After an injury, multiple biological pathways immediately become activated and are synchronized to respond. In human adults, the wound repair process commonly leads to a non-functioning mass of fibrotic tissue known as a scar. By contrast, early in gestation, injured fetal tissues can be completely recreated, without fibrosis, in a process resembling regeneration. Some organisms, however, retain the ability to regenerate tissue throughout adult life. Knowledge gained from studying such organisms might help to unlock latent regenerative pathways in humans, which would change medical practice as much as the introduction of antibiotics did in the twentieth century.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism

            Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress, inflammation, and cancer: how are they linked?

              Extensive research during the past 2 decades has revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer, diabetes, and cardiovascular, neurological, and pulmonary diseases. Oxidative stress can activate a variety of transcription factors including NF-κB, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. Activation of these transcription factors can lead to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules. How oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion, angiogenesis, and stem cell survival is the focus of this review. Overall, observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BSICCH
                Biomaterials Science
                Biomater. Sci.
                Royal Society of Chemistry (RSC)
                2047-4830
                2047-4849
                June 27 2023
                2023
                : 11
                : 13
                : 4430-4451
                Affiliations
                [1 ]State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
                [2 ]Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
                [3 ]Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
                [4 ]W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
                [5 ]Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
                Article
                10.1039/D3BM00262D
                37195779
                8c8e9396-21fc-410a-9061-f97ef3c09fbe
                © 2023

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article