3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sulfurization enhancement of FeMoO4 for electrochemical ammonia synthesis with high Faradaic efficiency in neutral media

      , , , , , ,
      Journal of Electroanalytical Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structural absorption by barbule microstructures of super black bird of paradise feathers

          Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05–0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape

            The future of green ammonia as long-term energy storage relies on the replacement of the conventional CO 2 intensive methane-fed Haber–Bosch process by distributed and agile ones aligned to the geographically isolated and intermittent renewable energy. The future of a carbon-free society relies on the alignment of the intermittent production of renewable energy with our continuous and increasing energy demands. Long-term energy storage in molecules with high energy content and density such as ammonia can act as a buffer versus short-term storage ( e.g. batteries). In this paper, we demonstrate that the Haber–Bosch ammonia synthesis loop can indeed enable a second ammonia revolution as energy vector by replacing the CO 2 intensive methane-fed process with hydrogen produced by water splitting using renewable electricity. These modifications demand a redefinition of the conventional Haber–Bosch process with a new optimisation beyond the current one which was driven by cheap and abundant natural gas and relaxed environmental concerns during the last century. Indeed, the switch to electrical energy as fuel and feedstock to replace fossil fuels ( e.g. methane) will lead to dramatic energy efficiency improvements through the use of high efficiency electrical motors and complete elimination of direct CO 2 emissions. Despite the technical feasibility of the electrically-driven Haber–Bosch ammonia, the question still remains whether such revolution will take place. We reveal that its success relies on two factors: increased energy efficiency and the development of small-scale, distributed and agile processes that can align to the geographically isolated and intermittent renewable energy sources. The former requires not only higher electrolyser efficiencies for hydrogen production but also a holistic approach to the ammonia synthesis loop with the replacement of the condensation separation step by alternative technologies such as absorption and catalysis development. Such innovations will open the door to moderate pressure systems, the development and deployment of novel ammonia synthesis catalysts, and even more importantly, the opportunity for integration of reaction and separation steps to overcome equilibrium limitations. When realised, green ammonia will reshape the current energy landscape by directly replacing fossil fuels in transportation, heating, electricity, etc. , and as done in the last century, food.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies

                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Electroanalytical Chemistry
                Journal of Electroanalytical Chemistry
                Elsevier BV
                15726657
                January 2022
                January 2022
                : 905
                : 115981
                Article
                10.1016/j.jelechem.2021.115981
                8c647cbe-b882-4a68-b21b-2cfaacde61dc
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article

                scite_
                14
                0
                5
                0
                Smart Citations
                14
                0
                5
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content836

                Cited by4

                Most referenced authors4,834