22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond IDH-Mutation: Emerging Molecular Diagnostic and Prognostic Features in Adult Diffuse Gliomas

      review-article
      * ,
      Cancers
      MDPI
      glioma, astrocytoma, oligodendroglioma, glioblastoma, GBM, IDH, copy number variation, CNV, EGFR, TERT, CDKN2A

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diffuse gliomas are among the most common adult central nervous system tumors with an annual incidence of more than 16,000 cases in the United States. Until very recently, the diagnosis of these tumors was based solely on morphologic features, however, with the publication of the WHO Classification of Tumours of the Central Nervous System, revised 4th edition in 2016, certain molecular features are now included in the official diagnostic and grading system. One of the most significant of these changes has been the division of adult astrocytomas into IDH-wildtype and IDH-mutant categories in addition to histologic grade as part of the main-line diagnosis, although a great deal of heterogeneity in the clinical outcome still remains to be explained within these categories. Since then, numerous groups have been working to identify additional biomarkers and prognostic factors in diffuse gliomas to help further stratify these tumors in hopes of producing a more complete grading system, as well as understanding the underlying biology that results in differing outcomes. The field of neuro-oncology is currently in the midst of a “molecular revolution” in which increasing emphasis is being placed on genetic and epigenetic features driving current diagnostic, prognostic, and predictive considerations. In this review, we focus on recent advances in adult diffuse glioma biomarkers and prognostic factors and summarize the state of the field.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: not found
          • Article: not found

          Current state of immunotherapy for glioblastoma

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular targeted therapy of glioblastoma

            Glioblastomas are intrinsic brain tumors thought to originate from neuroglial stem or progenitor cells. More than 90% of glioblastomas are isocitrate dehydrogenase (IDH)-wildtype tumors. Incidence increases with age, males are more often affected. Beyond rare instances of genetic predisposition and irradiation exposure, there are no known glioblastoma risk factors. Surgery as safely feasible followed by involved-field radiotherapy plus concomitant and maintenance temozolomide chemotherapy define the standard of care since 2005. Except for prolonged progression-free, but not overall survival afforded by the vascular endothelial growth factor antibody, bevacizumab, no pharmacological intervention has been demonstrated to alter the course of disease. Specifically, targeting cellular pathways frequently altered in glioblastoma, such as the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), the p53 and the retinoblastoma (RB) pathways, or epidermal growth factor receptor (EGFR) gene amplification or mutation, have failed to improve outcome, likely because of redundant compensatory mechanisms, insufficient target coverage related in part to the blood brain barrier, or poor tolerability and safety. Yet, uncommon glioblastoma subsets may exhibit specific vulnerabilities amenable to targeted interventions, including, but not limited to: high tumor mutational burden, BRAF mutation, neurotrophic tryrosine receptor kinase (NTRK) or fibroblast growth factor receptor (FGFR) gene fusions, and MET gene amplification or fusions. There is increasing interest in targeting not only the tumor cells, but also the microenvironment, including blood vessels, the monocyte/macrophage/microglia compartment, or T cells. Improved clinical trial designs using pharmacodynamic endpoints in enriched patient populations will be required to develop better treatments for glioblastoma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epidermal growth factor receptor (EGFR) and EGFRvIII in glioblastoma (GBM): signaling pathways and targeted therapies

              Amplification of EGFR and its active mutant EGFRvIII occur frequently in GBM. While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here, we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                06 July 2020
                July 2020
                : 12
                : 7
                : 1817
                Affiliations
                Department of Pathology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA; richatim@ 123456upstate.edu
                Author notes
                [* ]Correspondence: mirchiak@ 123456upstate.edu
                Author information
                https://orcid.org/0000-0002-7371-7059
                Article
                cancers-12-01817
                10.3390/cancers12071817
                7408495
                32640746
                8c53b7df-84f1-4b59-b980-51340cb52797
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 June 2020
                : 04 July 2020
                Categories
                Review

                glioma,astrocytoma,oligodendroglioma,glioblastoma,gbm,idh,copy number variation,cnv,egfr,tert,cdkn2a

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content335

                Cited by23

                Most referenced authors3,960