9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effect of drying method on the antioxidant capacity of six Lamiaceae herbs

      , , ,
      Food Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity of plant extracts containing phenolic compounds.

          The antioxidative activity of a total of 92 phenolic extracts from edible and nonedible plant materials (berries, fruits, vegetables, herbs, cereals, tree materials, plant sprouts, and seeds) was examined by autoxidation of methyl linoleate. The content of total phenolics in the extracts was determined spectrometrically according to the Folin-Ciocalteu procedure and calculated as gallic acid equivalents (GAE). Among edible plant materials, remarkable high antioxidant activity and high total phenolic content (GAE > 20 mg/g) were found in berries, especially aronia and crowberry. Apple extracts (two varieties) showed also strong antioxidant activity even though the total phenolic contents were low (GAE < 12.1 mg/g). Among nonedible plant materials, high activities were found in tree materials, especially in willow bark, spruce needles, pine bark and cork, and birch phloem, and in some medicinal plants including heather, bog-rosemary, willow herb, and meadowsweet. In addition, potato peel and beetroot peel extracts showed strong antioxidant effects. To utilize these significant sources of natural antioxidants, further characterization of the phenolic composition is needed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Stress-Induced Phenylpropanoid Metabolism

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents.

              Total equivalent antioxidant capacity (TEAC) and phenolic content of 26 common spice extracts from 12 botanical families were investigated. Qualitative and quantitative analyses of major phenolics in the spice extracts were systematically conducted by reversed-phase high-performance liquid chromatography (RP-HPLC). Many spices contained high levels of phenolics and demonstrated high antioxidant capacity. Wide variation in TEAC values (0.55-168.7 mmol/100 g) and total phenolic content (0.04-14.38 g of gallic acid equivalent/100 g) was observed. A highly positive linear relationship (R2= 0.95) obtained between TEAC values and total phenolic content showed that phenolic compounds in the tested spices contributed significantly to their antioxidant capacity. Major types of phenolic constituents identified in the spice extracts were phenolic acids, phenolic diterpenes, flavonoids, and volatile oils (e.g., aromatic compounds). Rosmarinic acid was the dominant phenolic compound in the six spices of the family Labiatae. Phenolic volatile oils were the principal active ingredients in most spices. The spices and related families with the highest antioxidant capacity were screened, e.g., clove in the Myrtaceae, cinnamon in the Lauraceae, oregano in the Labiatae, etc., representing potential sources of potent natural antioxidants for commercial exploitation. This study provides direct comparative data on antioxidant capacity and total and individual phenolics contents of the 26 spice extracts.
                Bookmark

                Author and article information

                Journal
                Food Chemistry
                Food Chemistry
                Elsevier BV
                03088146
                November 2010
                November 2010
                : 123
                : 1
                : 85-91
                Article
                10.1016/j.foodchem.2010.04.003
                8c421fa3-70a7-4ad6-bcfa-c31e01dad89d
                © 2010

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content4,932

                Cited by64

                Most referenced authors287