1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nitrogen deposition and phosphorus addition alter mobility of trace elements in subtropical forests in China

      , , , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.

          The cycles of the key nutrient elements nitrogen (N) and phosphorus (P) have been massively altered by anthropogenic activities. Thus, it is essential to understand how photosynthetic production across diverse ecosystems is, or is not, limited by N and P. Via a large-scale meta-analysis of experimental enrichments, we show that P limitation is equally strong across these major habitats and that N and P limitation are equivalent within both terrestrial and freshwater systems. Furthermore, simultaneous N and P enrichment produces strongly positive synergistic responses in all three environments. Thus, contrary to some prevailing paradigms, freshwater, marine and terrestrial ecosystems are surprisingly similar in terms of N and P limitation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper1

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource

              Phosphorus (P) is limiting for crop yield on > 30% of the world's arable land and, by some estimates, world resources of inexpensive P may be depleted by 2050. Improvement of P acquisition and use by plants is critical for economic, humanitarian and environmental reasons. Plants have evolved a diverse array of strategies to obtain adequate P under limiting conditions, including modifications to root architecture, carbon metabolism and membrane structure, exudation of low molecular weight organic acids, protons and enzymes, and enhanced expression of the numerous genes involved in low-P adaptation. These adaptations may be less pronounced in mycorrhizal-associated plants. The formation of cluster roots under P-stress by the nonmycorrhizal species white lupin (Lupinus albus), and the accompanying biochemical changes exemplify many of the plant adaptations that enhance P acquisition and use. Physiological, biochemical, and molecular studies of white lupin and other species response to P-deficiency have identified targets that may be useful for plant improvement. Genomic approaches involving identification of expressed sequence tags (ESTs) found under low-P stress may also yield target sites for plant improvement. Interdisciplinary studies uniting plant breeding, biochemistry, soil science, and genetics under the large umbrella of genomics are prerequisite for rapid progress in improving nutrient acquisition and use in plants. Contents I. Introduction 424 II. The phosphorus conundrum 424 III. Adaptations to low P 424 IV. Uptake of P 424 V. P deficiency alters root development and function 426 VI. P deficiency modifies carbon metabolism 431 VII. Acid phosphatase 436 VIII. Genetic regulation of P responsive genes 437 IX. Improving P acquisition 439 X. Synopsis 440.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                August 2021
                August 2021
                : 781
                : 146778
                Article
                10.1016/j.scitotenv.2021.146778
                8c17de2a-a97e-40a3-a113-0db98fe5d566
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article