46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recovery from the most profound mass extinction of all time

      1 , 1
      Proceedings of the Royal Society B: Biological Sciences
      The Royal Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The end-Permian mass extinction, 251 million years (Myr) ago, was the most devastating ecological event of all time, and it was exacerbated by two earlier events at the beginning and end of the Guadalupian, 270 and 260 Myr ago. Ecosystems were destroyed worldwide, communities were restructured and organisms were left struggling to recover. Disaster taxa, such as Lystrosaurus, insinuated themselves into almost every corner of the sparsely populated landscape in the earliest Triassic, and a quick taxonomic recovery apparently occurred on a global scale. However, close study of ecosystem evolution shows that true ecological recovery was slower. After the end-Guadalupian event, faunas began rebuilding complex trophic structures and refilling guilds, but were hit again by the end-Permian event. Taxonomic diversity at the alpha (community) level did not recover to pre-extinction levels; it reached only a low plateau after each pulse and continued low into the Late Triassic. Our data showed that though there was an initial rise in cosmopolitanism after the extinction pulses, large drops subsequently occurred and, counter-intuitively, a surprisingly low level of cosmopolitanism was sustained through the Early and Middle Triassic.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Taxonomic Diversity during the Phanerozoic.

          D Raup (1972)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of sampling standardization on estimates of Phanerozoic marine diversification.

            Global diversity curves reflect more than just the number of taxa that have existed through time: they also mirror variation in the nature of the fossil record and the way the record is reported. These sampling effects are best quantified by assembling and analyzing large numbers of locality-specific biotic inventories. Here, we introduce a new database of this kind for the Phanerozoic fossil record of marine invertebrates. We apply four substantially distinct analytical methods that estimate taxonomic diversity by quantifying and correcting for variation through time in the number and nature of inventories. Variation introduced by the use of two dramatically different counting protocols also is explored. We present sampling-standardized diversity estimates for two long intervals that sum to 300 Myr (Middle Ordovician-Carboniferous; Late Jurassic-Paleogene). Our new curves differ considerably from traditional, synoptic curves. For example, some of them imply unexpectedly low late Cretaceous and early Tertiary diversity levels. However, such factors as the current emphasis in the database on North America and Europe still obscure our view of the global history of marine biodiversity. These limitations will be addressed as the database and methods are refined.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insect diversity in the fossil record.

              Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.
                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proc. R. Soc. B
                The Royal Society
                0962-8452
                1471-2954
                January 15 2008
                April 07 2008
                January 15 2008
                April 07 2008
                : 275
                : 1636
                : 759-765
                Affiliations
                [1 ]Department of Earth Sciences, University of BristolWills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
                Article
                10.1098/rspb.2007.1370
                2596898
                18198148
                8c09bbca-d905-464a-9bfc-7c7138528694
                © 2008
                History

                Comments

                Comment on this article