2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Relationship between Toll-like Receptors and Helicobacter pylori-Related Gastropathies: Still a Controversial Topic

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Innate immunity represents the first barrier against bacterial invasion. Toll-like receptors (TLRs) belong to the large family of pattern recognition receptors (PRRs), and their activation leads to the induction of inflammatory cytokines, chemokines, antigen-presenting molecules, and costimulatory molecules. Recent studies have focused on identifying the association between TLRs and Helicobacter pylori- ( H. pylori-) related diseases. Therefore, this minireview focuses on assessing the role of these TLRs in the development of H. pylori-related gastropathies. Both TLR2 and TLR were found to be involved in H. pylori LPS recognition, with contradictory results most likely due to both the inability to obtain pure LPS in experimental studies and the heterogeneity of the bacterial LPS. In addition, TLR2 was found to be the most extensively expressed gene among all the TLRs in gastric tumors. High levels of TLR4 were also associated with a higher risk of gastric cancer. TLR5 was initially associated with the recognition of H. pylori flagellin, but it seems that this bacterium has developed mechanisms to escape this recognition representing an important factor involved in the persistence of this infection and subsequent carcinogenesis. TLR9, the only TLR with both anti- and proinflammatory roles, was involved in the recognition of H. pylori DNA. The dichotomous role of TLR9, promoting or suppressing the infection, depends on the gastric environment. Recently, TLR7 and TLR8 were shown to recognize purified H. pylori RNA, thereby inducing proinflammatory cytokines. TLR1 and TLR10 gene polymorphisms were associated with a higher risk for gastric cancer in H. pylori-infected individuals. Different gene polymorphisms of these TLRs were found to be associated with gastric cancer depending mostly on ethnicity. Further studies are required in order to develop preventive and therapeutic strategies against H. pylori infections based on the functions of TLRs.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Evasion of Toll-like receptor 5 by flagellated bacteria.

          Toll-like receptor 5 (TLR5) recognizes an evolutionarily conserved site on bacterial flagellin that is required for flagellar filament assembly and motility. The alpha and epsilon Proteobacteria, including the important human pathogens Campylobacter jejuni, Helicobacter pylori, and Bartonella bacilliformis, require flagellar motility to efficiently infect mammalian hosts. In this study, we demonstrate that these bacteria make flagellin molecules that are not recognized by TLR5. We map the site responsible for TLR5 evasion to amino acids 89-96 of the N-terminal D1 domain, which is centrally positioned within the previously defined TLR5 recognition site. Salmonella flagellin is strongly recognized by TLR5, but mutating residues 89-96 to the corresponding H. pylori flaA sequence abolishes TLR5 recognition and also destroys bacterial motility. To preserve bacterial motility, alpha and epsilon Proteobacteria possess compensatory amino acid changes in other regions of the flagellin molecule, and we engineer a mutant form of Salmonella flagellin that evades TLR5 but retains motility. These results suggest that TLR5 evasion is critical for the survival of this subset of bacteria at mucosal sites in animals and raise the intriguing possibility that flagellin receptors provided the selective force to drive the evolution of these unique subclasses of bacterial flagellins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9.

            Innate immunity serves as the first line of defence against invading pathogens such as bacteria and viruses. Toll-like receptors (TLRs) are examples of innate immune receptors, which sense specific molecular patterns from pathogens and activate immune responses. TLR9 recognizes bacterial and viral DNA containing the cytosine-phosphate-guanine (CpG) dideoxynucleotide motif. The molecular basis by which CpG-containing DNA (CpG-DNA) elicits immunostimulatory activity via TLR9 remains to be elucidated. Here we show the crystal structures of three forms of TLR9: unliganded, bound to agonistic CpG-DNA, and bound to inhibitory DNA (iDNA). Agonistic-CpG-DNA-bound TLR9 formed a symmetric TLR9-CpG-DNA complex with 2:2 stoichiometry, whereas iDNA-bound TLR9 was a monomer. CpG-DNA was recognized by both protomers in the dimer, in particular by the amino-terminal fragment (LRRNT-LRR10) from one protomer and the carboxy-terminal fragment (LRR20-LRR22) from the other. The iDNA, which formed a stem-loop structure suitable for binding by intramolecular base pairing, bound to the concave surface from LRR2-LRR10. This structure serves as an important basis for improving our understanding of the functional mechanisms of TLR9.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa.

              Pseudomonas aeruginosa causes serious nosocomial infections, and an important virulence factor produced by this organism is lipopolysaccharide (LPS). This review summarizes knowledge about biosynthesis of all three structural domains of LPS - lipid A, core oligosaccharide, and O polysaccharides. In addition, based on similarities with other bacterial species, this review proposes new hypothetical pathways for unstudied steps in the biosynthesis of P. aeruginosa LPS. Lipid A biosynthesis is discussed in relation to Escherichia coli and Salmonella, and the biosyntheses of core sugar precursors and core oligosaccharide are summarised. Pseudomonas aeruginosa attaches a Common Polysaccharide Antigen and O-Specific Antigen polysaccharides to lipid A-core. Both forms of O polysaccharide are discussed with respect to their independent synthesis mechanisms. Recent advances in understanding O-polysaccharide biosynthesis since the last major review on this subject, published nearly a decade ago, are highlighted. Since P. aeruginosa O polysaccharides contain unusual sugars, sugar-nucleotide biosynthesis pathways are reviewed in detail. Knowledge derived from detailed studies in the O5, O6 and O11 serotypes is applied to predict biosynthesis pathways of sugars in poorly-studied serotypes, especially O1, O4, and O13/O14. Although further work is required, a full understanding of LPS biosynthesis in P. aeruginosa is almost within reach.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Immunol Res
                J Immunol Res
                JIR
                Journal of Immunology Research
                Hindawi
                2314-8861
                2314-7156
                2019
                4 February 2019
                : 2019
                : 8197048
                Affiliations
                1Department of Pediatrics, University of Medicine, Pharmacy, Sciences and Technology Tîrgu Mures, Gheorghe Marinescu Street No. 38, 540136, Romania
                2University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mures, Gheorghe Marinescu Street No. 38, 540136, Romania
                Author notes

                Academic Editor: Kurt Blaser

                Author information
                http://orcid.org/0000-0003-2119-1726
                Article
                10.1155/2019/8197048
                6378784
                30863783
                8bf64ec8-1fcd-442e-98c3-8a6d9dd9693b
                Copyright © 2019 Lorena Elena Meliț et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 October 2018
                : 2 January 2019
                Categories
                Review Article

                Comments

                Comment on this article