23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coffee Berry Borer Joins Bark Beetles in Coffee Klatch

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unanswered key questions in bark beetle-plant interactions concern host finding in species attacking angiosperms in tropical zones and whether management strategies based on chemical signaling used for their conifer-attacking temperate relatives may also be applied in the tropics. We hypothesized that there should be a common link in chemical signaling mediating host location by these Scolytids. Using laboratory behavioral assays and chemical analysis we demonstrate that the yellow-orange exocarp stage of coffee berries, which attracts the coffee berry borer, releases relatively high amounts of volatiles including conophthorin, chalcogran, frontalin and sulcatone that are typically associated with Scolytinae chemical ecology. The green stage of the berry produces a much less complex bouquet containing small amounts of conophthorin but no other compounds known as bark beetle semiochemicals. In behavioral assays, the coffee berry borer was attracted to the spiroacetals conophthorin and chalcogran, but avoided the monoterpenes verbenone and α-pinene, demonstrating that, as in their conifer-attacking relatives in temperate zones, the use of host and non-host volatiles is also critical in host finding by tropical species. We speculate that microorganisms formed a common basis for the establishment of crucial chemical signals comprising inter- and intraspecific communication systems in both temperate- and tropical-occurring bark beetles attacking gymnosperms and angiosperms.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Insect host location: a volatile situation.

          Locating a host plant is crucial for a phytophagous (herbivorous) insect to fulfill its nutritional requirements and to find suitable oviposition sites. Insects can locate their hosts even though the host plants are often hidden among an array of other plants. Plant volatiles play an important role in this host-location process. The recognition of a host plant by these olfactory signals could occur by using either species-specific compounds or specific ratios of ubiquitous compounds. Currently, most studies favor the second scenario, with strong evidence that plant discrimination is due to central processing of olfactory signals by the insect, rather than their initial detection. Furthermore, paired or clustered olfactory receptor neurons might enable fine-scale spatio-temporal resolution of the complex signals encountered when ubiquitous compounds are used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactions among Scolytid bark beetles, their associated fungi, and live host conifers.

            Scolytid bark beetles that colonize living conifers are frequently associated with specific fungi that are carried in specialized structures or on the body surface. These fungi are introduced into the tree during the attack process. The continuing association suggests that there is mutual benefit to the fitness of both beetles and fungi. The fungal species may benefit from the association with the beetles by transport to new host trees. Beetle species may benefit from the association with fungi by feeding on the fungi, or by the fungi contributing to the death of the host trees through mycelial penetration of host tissue, toxin release, interactions with preformed and induced conifer defenses, or the combined action of both beetles and fungi during colonization. Extensive research has been directed towards characterizing the interactions of beetle-fungal complexes with live host conifers and determining the ecological advantages for maintaining the associations. However, differences among systems and how species interact under different population and environmental conditions make it difficult to generalize about the importance of the separate biological components in successful host colonization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacterial protection of beetle-fungus mutualism.

              Host-microbe symbioses play a critical role in the evolution of biological diversity and complexity. In a notably intricate system, southern pine beetles use symbiotic fungi to help overcome host-tree defenses and to provide nutrition for their larvae. We show that this beetle-fungal mutualism is chemically mediated by a bacterially produced polyunsaturated peroxide. The molecule's selective toxicity toward the beetle's fungal antagonist, combined with the prevalence and localization of its bacterial source, indicates an insect-microbe association that is both mutualistic and coevolved. This unexpected finding in a well-studied system indicates that mutualistic associations between insects and antibiotic-producing bacteria are more common than currently recognized and that identifying their small-molecule mediators can provide a powerful search strategy for therapeutically useful antimicrobial compounds.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                20 September 2013
                : 8
                : 9
                : e74277
                Affiliations
                [1 ]Institute of Plant Diseases and Plant Protection, Leibniz University Hannover, Hannover, Germany
                [2 ]International Center of Insect Physiology and Ecology ( icipe, ), Nairobi, Kenya
                [3 ]Institute of Organic Chemistry, University of Hamburg, Hamburg, Germany
                AgroParisTech, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JJ WF HMP CB. Performed the experiments: JJ BT WF AT DM. Analyzed the data: JJ WF AT. Wrote the paper: JJ BT WF.

                Article
                PONE-D-13-13745
                10.1371/journal.pone.0074277
                3779205
                24073204
                8ba57a91-b508-48f0-8b5e-87a11f115391
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 April 2013
                : 30 July 2013
                Page count
                Pages: 15
                Funding
                This research was funded by the German Research Foundation - Deutsche Forschungsgemeinschaft (DFG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article