26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extracellular matrix degradation by metalloproteinases and central nervous system diseases.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Matrix metalloproteinases (MMPs) are a gene family of neutral proteases involved in normal and pathological processes in the central nervous system (CNS). Normally released into the extracellular space, MMPs break down the extracellular matrix (ECM) to allow cell growth and to facilitate remodeling. Proteolysis becomes pathological when the normal balance between the proteases and their inhibitors, tissue inhibitors to metalloproteinases (TIMPs), is lost. Cancer cells secrete neutral proteases to facilitate spread through the ECM. MMPs increase capillary permeability, and they have been implicated in demyelination. Neurological diseases, such as brain tumors, multiple sclerosis, Guillain-Barré, ischemia, Alzheimer's disease, and infections, lead to an increase in the matrix-degrading proteases. Two classes of neutral proteases have been extensively studied, namely the MMPs and the plasminogen activators (PAs), which act in concert to attack the ECM. After proteolytic injury occurs, the process of ECM remodeling begins, which can lead to fibrosis of blood vessels and gliosis. TIMPs are increased after the acute injury and may add to the fibrotic buildup of ECM components. Thus, an imbalance in proteolytic activity either during the acute injury or in recovery may aggravate the underlying disease process. Agents that affect the proteolytic process at any of the regulating sites are potentially useful in therapy.

          Related collections

          Author and article information

          Journal
          Mol Neurobiol
          Molecular neurobiology
          Springer Science and Business Media LLC
          0893-7648
          0893-7648
          Jun 1999
          : 19
          : 3
          Affiliations
          [1 ] Department of Neurology, University of New Mexico School of Medicine, Albuquerque, USA. anton.lukes@insel.ch
          Article
          10.1007/BF02821717
          10495107
          8b7ec173-137c-40a8-967c-2b31e33ad3eb
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content567

          Cited by36