0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Docosahexaenoic acid improves cognition and hippocampal pyroptosis in rats with intrauterine growth restriction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objective

          Intrauterine growth restriction (IUGR) is defined as the failure of a fetus to reach its genetic growth potential in utero resulted by maternal, placental, fetal, and genetic factors. Previous studies have reported that IUGR is associated with a high incidence of neurological damage, although the precise causes of such damage remain unclear. We aimed to investigate whether cognitive impairment in rats with IUGR is related to pyroptosis of hippocampal neurons and determine the effect of early intervention with docosahexaenoic acid (DHA).

          Methods

          Learning and memory function was assessed using the Morris water maze test. The morphological structure and ultrastructure of the hippocampus was examined via hematoxylin and eosin staining and electron microscopy respectively. The pyroptosis of hippocampal neuron was detected by gasdermin-D (GSDMD) immunofluorescence staining, mRNA and protein expression of nuclear localization leucine-rich-repeat protein 1 (NLRP1), caspase-1, GSDMD, and quantification of inflammatory cytokines interleukin (IL)-1β and IL-18 in the hippocampus.

          Results

          IUGR rats exhibited decreased learning and memory function, morphological structure and ultrastructural changes in hippocampus compared to controls. IUGR rats also exhibited increased hippocampal quantification of GSDMD immunofluorescence staining, increased mRNA and protein expression of NLRP1, caspase-1, and GSDMD, and increased quantification of IL-1β and IL-18 in the hippocampus. Intervention with DHA attenuated these effects.

          Conclusion

          Cognitive impairment in rats with IUGR may be related to pyroptosis of hippocampal neurons. Early intervention with DHA may attenuate cognitive impairment and reduce hippocampal pyroptosis in rats with IUGR.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.

          Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammasome Complexes: Emerging Mechanisms and Effector Functions.

            Canonical activation of the inflammasome is critical to promote caspase-1-dependent maturation of the proinflammatory cytokines IL-1β and IL-18, as well as to induce pyroptotic cell death in response to pathogens and endogenous danger signals. Recent discoveries, however, are beginning to unveil new components of the inflammasome machinery as well as the full spectrum of inflammasome functions, extending their influence beyond canonical functions to regulation of eicosanoid storm, autophagy, and metabolism. In addition, the receptor components of the inflammasome can also regulate diverse biological processes, such as cellular proliferation, gene transcription, and tumorigenesis, all of which are independent of their inflammasome complex-forming capabilities. Here, we review these recent advances that are shaping our understanding of the complex biology of the inflammasome and its constituents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms governing inflammasome activation, assembly and pyroptosis induction.

              Inflammasomes are multimeric protein complexes that regulate inflammatory responses and pyroptotic cell death to exert host defense against microbes. Intracellular pattern-recognition receptors such as nucleotide-binding domain and leucine-rich repeat receptors (NLRs) and absent in melanoma 2 like receptors (ALRs) assemble the inflammasome complexes in response to pathogens and danger or altered-self signals in the cell. Inflammasome sensors, in association with an adaptor protein - apoptosis associated speck-like protein containing a caspase-activation and -recruitment domain (ASC) - activate inflammatory caspase-1 to enable the release of inflammatory cytokines and induce cell death, conferring host defense against pathogens. Beyond infectious diseases, the importance of inflammasomes is implicated in a variety of clinical conditions such as auto-inflammatory diseases, neuro-degeneration and metabolic disorders and the development of cancers. Understanding inflammasome activation and its molecular regulation can unveil therapeutic targets for controlling inflammasome-mediated disorders. In this review, we describe recent advances in inflammasome biology and discuss its activation, structural insights into inflammasome assembly and mechanisms for the execution of pyroptosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                27 January 2023
                February 2023
                27 January 2023
                : 9
                : 2
                : e12920
                Affiliations
                [a ]Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
                [b ]Department of Child Healthcare, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410011, PR China
                [c ]Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan 410011, PR China
                [d ]Children's Institute of Three Gorges University, Yichang Central People's Hospital, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang 443003, PR China
                Author notes
                []Corresponding author. NO.139, Renmin Middle Road, furong District, Changsha, Hunan 410011, PR China. chenpingyang@ 123456csu.edu.cn
                Article
                S2405-8440(23)00127-5 e12920
                10.1016/j.heliyon.2023.e12920
                9898307
                36747549
                8b70fad6-ee94-457a-ad21-7b11767ee196
                © 2023 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 15 September 2022
                : 4 January 2023
                : 9 January 2023
                Categories
                Research Article

                intrauterine growth restriction,small for gestational age,pyroptosis,dha,cognitive impairment,hippocampus

                Comments

                Comment on this article