High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice : HFD AFFECTS BM-MSC PROPERTIES AND INSULIN SENSITIVITY IN MICE
There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Stem cell-based regenerative medicine is a promising approach for tissue reconstruction. Here, we showed that pro-inflammatory T cells in the recipients inhibited bone marrow mesenchymal stem cell (BMMSC)-mediated bone formation via T helper 1 (Th1) cytokine interferon (IFN)-γ induced down-regulation of runt-related transcription factor 2 (Runx-2) pathway and tumor necrosis factor (TNF)-α-regulated BMMSC apoptosis. TNF-α converted IFN-γ-activated non-apoptotic Fas to a caspase 3/8-associated apoptotic signaling in BMMSCs through inhibition of nuclear factor kappa B (NFκB), resulting in BMMSC apoptosis. Conversely, reduction of IFN-γ and TNF-α levels by systemic infusion of Foxp3+ regulatory T cells (Tregs) markedly improved BMMSC-based bone regeneration and calvarial defect repair in C57BL6 mice. Furthermore, we showed that local administration of aspirin reduced levels of IFN-γ and TNF-α at the implantation site and significantly improved BMMSC-based calvarial defect repair. These data collectively uncover a previously unrecognized role of recipient T cells in BMMSC-based tissue engineering.
Sex differences in obesity-induced complications such as type 2 diabetes have been reported. The aim of the study was to pinpoint the mechanisms resulting in different outcome of female and male mice on a high-fat diet (HFD). Mice fed control or HFD were monitored for weight, blood glucose, and insulin for 14 weeks. Circulating chemokines, islet endocrine function and blood flow, as well as adipose tissue populations of macrophages and regulatory T-lymphocytes (Treg) were thereafter assessed. Despite similar weight (43.8±1.0 and 40.2±1.5 g, respectively), male but not female mice developed hyperinsulinemia on HFD as previously described (2.5±0.7 and 0.5±0.1 pmol/l, respectively) consistent with glucose intolerance. Male mice also exhibited hypertrophic islets with intact function in terms of insulin release and blood perfusion. Low-grade, systemic inflammation was absent in obese female but present in obese male mice (IL-6 and mKC, males: 77.4±17 and 1795±563; females: 14.6±4.9 and 240±22 pg/ml), and the population of inflammatory macrophages was increased in intra-abdominal adipose tissues of high-fat-fed male but not female mice. In contrast, the anti-inflammatory Treg cell population increased in the adipose tissue of female mice in response to weight gain, while the number decreased in high-fat-fed male mice. In conclusion, female mice are protected against HFD-induced metabolic changes while maintaining an anti-inflammatory environment in the intra-abdominal adipose tissue with expanded Treg cell population, whereas HFD-fed male mice develop adipose tissue inflammation, glucose intolerance, hyperinsulinemia, and islet hypertrophy.
[1
]Department of Molecular Endocrinology; KMEB; University of Southern Denmark and Odense
University Hospital; Odense C Denmark
[2
]Danish Diabetes Academy; Odense C Denmark
[3
]Molecular Skeletal Biology Laboratory; Department of Trauma; Hand, and Reconstructive
Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
[4
]Department of Cellular and Molecular Medicine; Danish Stem Cell Center (DanStem);
University of Copenhagen; Copenhagen Denmark
[5
]Stem Cell Unit; Department of Anatomy; Faculty of Medicine; King Saud University;
Kingdom of Saudi Arabia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.