3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Organ‐on‐chip of the cervical epithelial layer: A platform to study normal and pathological cellular remodeling of the cervix

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants - past, present and future.

          Tumor Necrosis Factor (TNF), initially known for its tumor cytotoxicity, is a potent mediator of inflammation, as well as many normal physiological functions in homeostasis and health, and anti-microbial immunity. It also appears to have a central role in neurobiology, although this area of TNF biology is only recently emerging. Here, we review the basic biology of TNF and its normal effector functions, and discuss the advantages and disadvantages of therapeutic neutralization of TNF - now a commonplace practice in the treatment of a wide range of human inflammatory diseases. With over ten years of experience, and an emerging range of anti-TNF biologics now available, we also review their modes of action, which appear to be far more complex than had originally been anticipated. Finally, we highlight the current challenges for therapeutic intervention of TNF: (i) to discover and produce orally delivered small molecule TNF-inhibitors, (ii) to specifically target selected TNF producing cells or individual (diseased) tissue targets, and (iii) to pre-identify anti-TNF treatment responders. Although the future looks bright, the therapeutic modulation of TNF now moves into the era of personalized medicine with society's challenging expectations of durable treatment success and of achieving long-term disease remission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The preterm parturition syndrome.

            The implicit paradigm that has governed the study and clinical management of preterm labour is that term and preterm parturition are the same processes, except for the gestational age at which they occur. Indeed, both share a common pathway composed of uterine contractility, cervical dilatation and activation of the membranes/decidua. This review explores the concept that while term labour results from physiological activation of the components of the common pathway, preterm labour arises from pathological signalling and activation of one or more components of the common pathway of parturition. The term "great obstetrical syndromes" has been coined to reframe the concept of obstetrical disease. Such syndromes are characterised by: (1) multiple aetiology; (2) long preclinical stage; (3) frequent fetal involvement; (4) clinical manifestations that are often adaptive in nature; and (5) gene-environment interactions that may predispose to the syndromes. This article reviews the evidence indicating that the pathological processes implicated in the preterm parturition syndrome include: (1) intrauterine infection/inflammation; (2) uterine ischaemia; (3) uterine overdistension; (4) abnormal allograft reaction; (5) allergy; (6) cervical insufficiency; and (7) hormonal disorders (progesterone related and corticotrophin-releasing factor related). The implications of this conceptual framework for the prevention, diagnosis, and treatment of preterm labour are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Vimentin on the move: new developments in cell migration

              The vimentin gene ( VIM) encodes one of the 71 human intermediate filament (IF) proteins, which are the building blocks of highly ordered, dynamic, and cell type-specific fiber networks. Vimentin is a multi-functional 466 amino acid protein with a high degree of evolutionary conservation among vertebrates. Vim −/− mice, though viable, exhibit systemic defects related to development and wound repair, which may have implications for understanding human disease pathogenesis. Vimentin IFs are required for the plasticity of mesenchymal cells under normal physiological conditions and for the migration of cancer cells that have undergone epithelial–mesenchymal transition. Although it was observed years ago that vimentin promotes cell migration, the molecular mechanisms were not completely understood. Recent advances in microscopic techniques, combined with computational image analysis, have helped illuminate vimentin dynamics and function in migrating cells on a precise scale. This review includes a brief historical account of early studies that unveiled vimentin as a unique component of the cell cytoskeleton followed by an overview of the physiological vimentin functions documented in studies on Vim −/− mice. The primary focus of the discussion is on novel mechanisms related to how vimentin coordinates cell migration. The current hypothesis is that vimentin promotes cell migration by integrating mechanical input from the environment and modulating the dynamics of microtubules and the actomyosin network. These new findings undoubtedly will open up multiple avenues to study the broader function of vimentin and other IF proteins in cell biology and will lead to critical insights into the relevance of different vimentin levels for the invasive behaviors of metastatic cancer cells.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The FASEB Journal
                FASEB j.
                Wiley
                0892-6638
                1530-6860
                April 2021
                March 10 2021
                April 2021
                : 35
                : 4
                Affiliations
                [1 ]Division of Maternal‐Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology The University of Texas Medical Branch at Galveston Galveston TX USA
                [2 ]Department of Biochemistry and Molecular Biology, College of Medicine University of the Philippines Manila Manila Philippines
                [3 ]Department of Electrical and Computer Engineering, Department of Biomedical Engineering Texas A&M University College Station TX USA
                Article
                10.1096/fj.202002590RRR
                33689188
                8b44fe02-487c-47f6-b120-c09c1dfc281f
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article