Exogenous administration of ghrelin increases caloric intake and stimulates growth hormone (GH) secretion, two effects that are mediated through binding of ghrelin to the GH secretagogue receptor (GHS-R). In addition, ghrelin is thought to inhibit adipogenesis by GHS-R-independent mechanisms. In adults, ghrelin is mainly produced by the stomach. In contrast, in the fetal and early postnatal period, ghrelin gene expression is abundant in the pancreas but not in the stomach. While knockout animal studies demonstrate that ghrelin is not required for perinatal development under normal nutritional conditions, the characteristics of ghrelin metabolism during fetal development suggest that ghrelin could contribute to the programming of mechanisms involved in energy balance, such as β-cell maturation, orexigenic pathways and adipogenesis. In humans, ghrelin concentrations progressively decrease during childhood and adolescence, as well as with advancing puberty. In adolescents, similar to adults, ghrelin concentrations are inversely related to body mass index and to circulating insulin. One notable exception is the presence of elevated ghrelin concentrations in subjects with Prader-Willi syndrome, raising the possibility that ghrelin could be part of the etiology of excess food intake in this condition. These data raise a number of fascinating questions on the potential physiologic role of this hormone during growth and development.