69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reducing antimicrobial use in food animals : Consider user fees and regulatory caps on veterinary use

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The large and expanding use of antimicrobials in livestock, a consequence of growing global demand for animal protein, is of considerable concern in light of the threat of antimicrobial resistance (AMR). Use of antimicrobials in animals has been linked to drug-resistant infections in animals ( 1 ) and humans ( 2 ). In September 2016, the United Nations (UN) General Assembly recognized the inappropriate use of antimicrobials in animals as a leading cause of rising AMR. In September 2018, the interagency group established by the UN Secretary General will report on progress in the global response to AMR, including antimicrobial consumption in animals. We provide a baseline to monitor efforts to reduce antimicrobial use and assess how three global policies might curb antimicrobial consumption in food animal production: (i) enforcing global regulations to cap antimicrobial use, (ii) adherence to nutritional guidelines leading to reduced meat consumption, and (iii) imposing a global user fee on veterinary antimicrobial use. The rise of AMR in zoonotic pathogens, including to last-resort drugs such as colistin ( 3 ), is an important challenge for human medicine because it can lead to untreatable infections. Evidence linking AMR between animals and humans is particularly strong for common foodborne pathogens resistant to quinolones, such as Campylobacter spp. and Salmonella spp. ( 4 ). AMR is also a threat to the livestock sector and thus to the livelihoods of millions who raise animals for subsistence ( 5 ). The primary driver for the accumulation of harmful resistance genes in the animal reservoir is the large quantity of antimicrobials used in animal production ( 6 ). Antimicrobial use in livestock, which in many countries outweighs human consumption ( 7 ), is primarily associated with the routine use of antimicrobials as growth promoters or their inappropriate use as low-cost substitutes for hygiene measures that could otherwise prevent infections in livestock. In Europe, regulations have been the principal instrument to limit antimicrobial use in animal production. In the United States, consumer preferences have driven companies to reduce antimicrobial use in animals, although the impact on livestock rearing practices is still nascent ( 8 ). Some European countries maintain highly productive livestock sectors while using less than half the current global average amount of antimicrobial per kilogram of animal (50 mg/kg). Therefore, this threshold has been proposed as a potential target for global regulations on veterinary antimicrobial use ( 9 ). However, the impact that such policies would have on the global consumption of antimicrobials has yet to be quantified. A second solution to reduce antimicrobial consumption in animal production may be to promote low-animal-protein diets: China has recently revised downward its nutritional guidelines for meat intake to 40 to 70 g/day ( 10 ), which is approximately half the current consumption level in the country. If followed, this measure could have an indirect but substantial impact on the global consumption of veterinary antimicrobials. A third solution to cut antimicrobial use would be to charge a user fee, paid by veterinary drug users, on sales of antimicrobials for nonhuman use ( 11 ). This approach has recently received support from the World Bank ( 12 ) on the basis that the associated revenues could be injected into a global fund to stimulate discovery of new antimicrobials and support efforts to preserve existing drugs ( 13 ). Without further analysis, however, it is unclear whether a user fee policy could achieve a meaningful reduction in the global consumption of veterinary antimicrobials, let alone generate sufficient revenues to support improved livestock rearing practices or the development of new drugs, vaccines, and diagnostics. GLOBAL TRENDS Veterinary antimicrobial sales volumes were obtained via public records for 38 countries and self-governing dependencies and estimated for 190 more (supplementary materials). In 2013, the global consumption of all antimicrobials in food animals was estimated at 131,109 tons [95% confidence interval (CI) (100,812 to 190,492 tons)] and is projected to reach 200,235 tons [95% CI (150,848 to 297,034 tons)] by 2030. Consumption levels varied considerably between countries, ranging from 8 mg/population correction unit (PCU) (a kilogram of animal product) in Norway to 318 mg/PCU in China (see fig. S1). As the largest consumer of veterinary antimicrobials, both in relative (per PCU) and in absolute terms, China has an important leadership role with regard to its response to AMR and has already set precedents in phasing out drugs that are last resorts for human infections but are still in use in Europe in animal husbandry. In relative terms, humans and animals use comparable amounts of antimicrobials [118 mg/PCU and 133 mg/kg, respectively ( 14 )], but given that the biomass of animals raised for food exceeds by far the biomass of humans, new resistant mutations are more likely to arise in animals. Furthermore, a central distinction between animals and humans is the purpose of antimicrobial use. Unlike in humans, antimicrobial use in animals is primarily intended for growth promotion and mass prophylaxis. These uses are often administered both through feed, directly targeting the gut, and in low-dose patterns that promote the evolution of resistance ( 15 ). These factors suggest that the food animal reservoir is a greater source of resistance genes than humans. However, the subsequent spread of those genes to humans follows complex pathways, and recent work has highlighted that curtailing antimicrobial use in animals alone will not suffice to contain AMR in humans ( 16 ). Pigs in cages, Quanzhou, China. As the largest consumer of veterinary antimicrobials, China is critical for combating antimicrobial resistance (AMR). GLOBAL SOLUTIONS The use of antimicrobials in food animals could be reduced by 2030 between 9 and 80% with effective policies compared with a business-as-usual target (BAU) of continued growth of the livestock sector with current levels of antimicrobial use (see the graph). This could be achieved either by reducing the quantity of antimicrobial used per animal (targets 1 and 3) or the number of animals that we raise for food (target 2). Regulations. A global regulation putting a cap of 50 mg of antimicrobials per PCU per year, the current global average amount, could reduce total consumption by 64% (target 1A). If only countries of the Organization for Economic Cooperation and Development (OECD) and China were to adopt this regulation, the global consumption in 2030 would already be reduced by 60% (target 1B). In the short term, target 1B may be preferred because it would have substantial impact on global consumption without targeting vulnerable farmers in low- and middle-income countries (LMICs) who rely on the ability to treat livestock for subsistence ( 17 ). In some high-income countries, regulatory approaches have achieved substantial reduction in antimicrobial use within a few years and at moderate costs. However, in LMICs, the cost of setting up surveillance systems is a barrier to enforcement, and our findings are contingent on enforceability. Meat consumption. Limiting meat intake worldwide to 40 g/day—the equivalent of one standard fast-food burger per person— could reduce global consumption of antimicrobials in food animals by 66% (target 2A). This reduction is comparable with what could be achieved through regulations targeting antimicrobial use (targets 1A and 1B). In comparison, meat consumption in the United States currently averages 260 g/ day (OECD 2015). In this context, and given increasing appetites for meat in emerging economies, it seems unlikely that antimicrobial use in food animals could be reduced substantially through voluntary adherence to such drastic changes in dietary habits. Under a more realistic global cap of 165 g meat/day (projected EU average in 2030), global consumption of antimicrobials could be reduced by 22% (target 2B). Reduced meat consumption could thus have substantial benefits on AMR as well as other environmental and human health issues. User fees. Imposing a user fee of 50% of the current price on veterinary antimicrobials could reduce global consumption by 31% (target 3C). More important, such a policy would also generate yearly revenues between US$ 1.7 billion and 4.6 billion (Protocol S4). In comparison, the level of investment necessary for the development of one new antimicrobial compound is typically US$ 1 billion ( 18 ). Alternative rates of 10 or 100% for the user fee would reduce the global consumption by 9 and 46%, generating revenues of US$ 0.4 billion to 1.2 billion and US$ 2.8 billion to 7.5 billion, respectively. Concretely, the fee could be applied at the point of manufacture or wholesale purchase for imported products. The advantages of this implementation are twofold. First, given the limited number of drug manufacturers, enforcement would require only limited resources. Second, manufacturers are more likely than veterinarians to keep records of volumes traded, especially in countries where drugs are used without prescription. However, because user fees could be passed on to individual farmers, these could also have adverse effects if not accompanied by other measures to reduce the need for antimicrobials in food production. Here, we identify that demand for veterinary antimicrobials is on average more elastic in LMICs (Protocol S4), with the notable exception of China, where demand was inelastic because of increased reliance on antimicrobials for food production. LMICs could therefore be disproportionally affected by a user fee. COMPARISON AND LIMITATIONS The solutions presented in this analysis are not mutually exclusive; if considered in combinations, regulatory caps, user fees, and reductions in meat intake could potentially reduce global consumption of antimicrobials in animals by up to 80%. However, implementation of those policies should account for differences across income groups. We show that a global user fee policy could circumvent the limitations inherent to regulatory approaches while still achieving a meaningful reduction in antimicrobial use (31%). Unlike regulations that may be virtually impossible to enforce in LMICs, a user fee policy could be applied immediately, without waiting for costly surveillance networks to put in place. In LMICs, large livestock producers could follow the example from European countries, where drastic reductions in antimicrobial consumption could have potential long-term benefits. In compensation for the reduction in antimicrobial use in LMICs, major investments will be needed to improve farm hygiene and expand veterinary services. We show that these could be partly financed with the revenues of the user fee policy through a global fund. In parallel, national programs should also ensure that antimicrobials used for treatment by smallholders remain affordable so that a global user fee doesn’t become an obstacle for livestock- driven economic development. In the long run, this transition to low antimicrobial use could benefit all countries: Phasing out growth that promotes antimicrobials will likely have limited impact on food production ( 19 ) but would reduce the risk of emergence of pathogens resistant to lastresort drugs ( 3 ). Reducing antimicrobial use may also benefit LMICs to secure export markets where customers express preferences for products obtained without antimicrobials ( 8 ) and restriction on antimicrobial use may apply as part of trade agreements. Our findings are subject to limitations. For example, although more countries (including LMICs) have reported sales of antimicrobials for this estimate compared with 2010 ( 20 ), information on sales broken down by species and by classes of compounds is still limited. As a result, consumption in nonreporting countries can only be estimated through extrapolations. In addition, available information on antimicrobial prices prevents a more advanced economic analysis on the impact of user fees than presented in this study. Unlike for human medicine, there is currently no global database (public or private) on veterinary antimicrobial sales accessible to the public health community. Although present data are limited, outlining current knowledge allows inferences to be made about the relative impact of different policies to curb antimicrobial use. Our findings suggest that imposing a user fee on veterinary antimicrobials is a plausible policy option to achieve meaningful reductions in antimicrobial use in the short term while simultaneously raising funds to improve farming practices that will benefit the long-term viability of the livestock industry. Antimicrobial consumption in food animals by 2030 Business as usual and intervention policies are shown. Revenue ranges are estimated for different fee rates (TR) and price elasticities of demand (PED). For 3C, 3D, and 3E, PEDs are derived from time series of imports of veterinary antimicrobials in each country (Protocol S4); the global average PED was -0.95. See supplementary materials for discussions of uncertainty in all estimates shown in figures. PCU, population correction unit. Supplementary Material Click here for additional data file.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The weight of nations: an estimation of adult human biomass

          Background The energy requirement of species at each trophic level in an ecological pyramid is a function of the number of organisms and their average mass. Regarding human populations, although considerable attention is given to estimating the number of people, much less is given to estimating average mass, despite evidence that average body mass is increasing. We estimate global human biomass, its distribution by region and the proportion of biomass due to overweight and obesity. Methods For each country we used data on body mass index (BMI) and height distribution to estimate average adult body mass. We calculated total biomass as the product of population size and average body mass. We estimated the percentage of the population that is overweight (BMI > 25) and obese (BMI > 30) and the biomass due to overweight and obesity. Results In 2005, global adult human biomass was approximately 287 million tonnes, of which 15 million tonnes were due to overweight (BMI > 25), a mass equivalent to that of 242 million people of average body mass (5% of global human biomass). Biomass due to obesity was 3.5 million tonnes, the mass equivalent of 56 million people of average body mass (1.2% of human biomass). North America has 6% of the world population but 34% of biomass due to obesity. Asia has 61% of the world population but 13% of biomass due to obesity. One tonne of human biomass corresponds to approximately 12 adults in North America and 17 adults in Asia. If all countries had the BMI distribution of the USA, the increase in human biomass of 58 million tonnes would be equivalent in mass to an extra 935 million people of average body mass, and have energy requirements equivalent to that of 473 million adults. Conclusions Increasing population fatness could have the same implications for world food energy demands as an extra half a billion people living on the earth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dietary Guidelines for Chinese Residents (2016): comments and comparisons.

            A high quality diet is believed to play a functional role in promoting the healthy growth of mankind and preventing many kinds of chronic degenerative diseases, including cancer, cardiovascular disease, diabetes, and obesity. Adherence to a high quality diet has been strongly associated with a lower risk of mortality. To help promote healthy lifestyles and physical strength, the Chinese government has produced a new revised version of the Dietary Guidelines for Chinese Residents (2016) and the Chinese Food Pagoda, as guidance for dietary intake among its population. Similarly, the Japanese government has produced the Japanese Food Guide Spinning Top Model, and the US government has recently published revised dietary recommendations in its 2015-2020 eighth edition of Dietary Guidelines for Americans. The evidence from all respective cohort studies involved in producing these guidelines shows a reduced risk of many chronic diseases and mortality if the guidelines are followed. All scientific findings support encouraging the general population to consume a broad variety of food on the basis of nutrient and food intakes in order to prevent deficiency diseases and a surplus of energy and nutrients, and recommend daily physical activity for health promotion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates.

              The incidence of human Campylobacter jejuni and C. coli infections has increased markedly in many parts of the world in the last decade as has the number of quinolone-resistant and, to a lesser extent, macrolide-resistant Campylobacter strains causing infections. We review macrolide and quinolone resistance in Campylobacter and track resistance trends in human clinical isolates in relation to use of these agents in food animals. Susceptibility data suggest that erythromycin and other macrolides should remain the drugs of choice in most regions, with systematic surveillance and control measures maintained, but fluoroquinolones may now be of limited use in the empiric treatment of Campylobacter infections in many regions.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                Science
                Science (New York, N.y.)
                American Association for the Advancement of Science
                0036-8075
                1095-9203
                29 September 2017
                2017
                : 351
                : 6358
                : 1350-1352
                Affiliations
                [1 ]Institute of Integrative Biology, ETH Zurich, Zurich 8006, Switzerland
                [2 ]Center for Disease Dynamics, Economics and Policy, Washington, DC 20005, USA
                [3 ]Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
                [4 ]Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
                [5 ]Université Libre de Bruxelles, Brussels 1050, Belgium
                [6 ]Fonds National de la Recherche Scientifique, Brussels 1050, Belgium
                [7 ]International Livestock Research Institute, Nairobi 00100, Kenya
                [8 ]Food and Agriculture Organization of the United Nations, Rome 00153, Italy
                [9 ]Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
                [10 ]Princeton Environmental Institute, Princeton University, Princeton, NJ 08544, USA
                Author notes
                Article
                Science-357-1350
                10.1126/science.aao1495
                6510296
                28963240
                8ab969b8-aeea-48da-a41a-b3072220291e
                2017 © The Authors, some rights reserved

                This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Global Health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article