65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      African Herbal Remedies with Antioxidant Activity: A Potential Resource Base for Wound Treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of traditional herbal remedies as alternative medicine plays an important role in Africa since it forms part of primary health care for treatment of various medical conditions, including wounds. Although physiological levels of free radicals are essential to the healing process, they are known to partly contribute to wound chronicity when in excess. Consequently, antioxidant therapy has been shown to facilitate healing of such wounds. Also, a growing body of evidence suggests that, at least, part of the therapeutic value of herbals may be explained by their antioxidant activity. This paper reviews African herbal remedies with antioxidant activity with the aim of indicating potential resources for wound treatment. Firstly, herbals with identified antioxidant compounds and, secondly, herbals with proven antioxidant activity, but where the compound(s) responsible for the activity has not yet been identified, are listed. In the latter case it has been attempted to ascribe the activity to a compound known to be present in the plant family and/or species, where related activity has previously been documented for another genus of the species. Also, the tests employed to assess antioxidant activity and the potential caveats thereof during assessment are briefly commented on.

          Related collections

          Most cited references477

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids as antioxidants.

          Flavonoids are phenolic substances isolated from a wide range of vascular plants, with over 8000 individual compounds known. They act in plants as antioxidants, antimicrobials, photoreceptors, visual attractors, feeding repellants, and for light screening. Many studies have suggested that flavonoids exhibit biological activities, including antiallergenic, antiviral, antiinflammatory, and vasodilating actions. However, most interest has been devoted to the antioxidant activity of flavonoids, which is due to their ability to reduce free radical formation and to scavenge free radicals. The capacity of flavonoids to act as antioxidants in vitro has been the subject of several studies in the past years, and important structure-activity relationships of the antioxidant activity have been established. The antioxidant efficacy of flavonoids in vivo is less documented, presumably because of the limited knowledge on their uptake in humans. Most ingested flavonoids are extensively degraded to various phenolic acids, some of which still possess a radical-scavenging ability. Both the absorbed flavonoids and their metabolites may display an in vivo antioxidant activity, which is evidenced experimentally by the increase of the plasma antioxidant status, the sparing effect on vitamin E of erythrocyte membranes and low-density lipoproteins, and the preservation of erythrocyte membrane polyunsaturated fatty acids. This review presents the current knowledge on structural aspects and in vitro antioxidant capacity of most common flavonoids as well as in vivo antioxidant activity and effects on endogenous antioxidants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer.

            Flavonoids are nearly ubiquitous in plants and are recognized as the pigments responsible for the colors of leaves, especially in autumn. They are rich in seeds, citrus fruits, olive oil, tea, and red wine. They are low molecular weight compounds composed of a three-ring structure with various substitutions. This basic structure is shared by tocopherols (vitamin E). Flavonoids can be subdivided according to the presence of an oxy group at position 4, a double bond between carbon atoms 2 and 3, or a hydroxyl group in position 3 of the C (middle) ring. These characteristics appear to also be required for best activity, especially antioxidant and antiproliferative, in the systems studied. The particular hydroxylation pattern of the B ring of the flavonoles increases their activities, especially in inhibition of mast cell secretion. Certain plants and spices containing flavonoids have been used for thousands of years in traditional Eastern medicine. In spite of the voluminous literature available, however, Western medicine has not yet used flavonoids therapeutically, even though their safety record is exceptional. Suggestions are made where such possibilities may be worth pursuing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process.

              Reactive oxygen species (ROS) play a pivotal role in the orchestration of the normal wound-healing response. They act as secondary messengers to many immunocytes and non-lymphoid cells, which are involved in the repair process, and appear to be important in coordinating the recruitment of lymphoid cells to the wound site and effective tissue repair. ROS also possess the ability to regulate the formation of blood vessels (angiogenesis) at the wound site and the optimal perfusion of blood into the wound-healing area. ROS act in the host's defence through phagocytes that induce an ROS burst onto the pathogens present in wounds, leading to their destruction, and during this period, excess ROS leakage into the surrounding environment has further bacteriostatic effects. In light of these important roles of ROS in wound healing and the continued quest for therapeutic strategies to treat wounds in general and chronic wounds, such as diabetic foot ulcers, venous and arterial leg ulcers and pressure ulcers in particular, the manipulation of ROS represents a promising avenue for improving wound-healing responses when they are stalled. This article presents a review of the evidence supporting the critical role of ROS in wound healing and infection control at the wound site, and some of the new emerging concepts associated with ROS modulation and its potential in improving wound healing are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2018
                22 November 2018
                22 November 2018
                : 2018
                : 4089541
                Affiliations
                1National Institute for Occupational Health, Johannesburg, South Africa
                2Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
                3Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
                4Department of Pharmacology, University of Cape Coast, Cape Coast, Ghana
                Author notes

                Academic Editor: Olumayokun A. Olajide

                Author information
                http://orcid.org/0000-0003-1284-6831
                http://orcid.org/0000-0002-5003-9662
                http://orcid.org/0000-0003-3575-0410
                Article
                10.1155/2018/4089541
                6282146
                8a99e696-490c-4816-9925-fa66eda2dc16
                Copyright © 2018 Mary Gulumian et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 May 2018
                : 23 October 2018
                : 7 November 2018
                Categories
                Review Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content342

                Cited by3

                Most referenced authors5,226