2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effective adsorption of cadmium and lead using SO3H-functionalized Zr-MOFs in aqueous medium

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Application of low-cost adsorbents for dye removal--a review.

          Dyes are an important class of pollutants, and can even be identified by the human eye. Disposal of dyes in precious water resources must be avoided, however, and for that various treatment technologies are in use. Among various methods adsorption occupies a prominent place in dye removal. The growing demand for efficient and low-cost treatment methods and the importance of adsorption has given rise to low-cost alternative adsorbents (LCAs). This review highlights and provides an overview of these LCAs comprising natural, industrial as well as synthetic materials/wastes and their application for dyes removal. In addition, various other methods used for dye removal from water and wastewater are also complied in brief. From a comprehensive literature review, it was found that some LCAs, in addition to having wide availability, have fast kinetics and appreciable adsorption capacities too. Advantages and disadvantages of adsorbents, favourable conditions for particular adsorbate-adsorbent systems, and adsorption capacities of various low-cost adsorbents and commercial activated carbons as available in the literature are presented. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions.

            Highly efficient removal of metal ion pollutants, such as toxic and nuclear waste-related metal ions, remains a serious task from the biological and environmental standpoint because of their harmful effects on human health and the environment. Recently, highly porous metal-organic frameworks (MOFs), with excellent chemical stability and abundant functional groups, have represented a new addition to the area of capturing various types of hazardous metal ion pollutants. This review focuses on recent progress in reported MOFs and MOF-based composites as superior adsorbents for the efficient removal of toxic and nuclear waste-related metal ions. Aspects related to the interaction mechanisms between metal ions and MOF-based materials are systematically summarized, including macroscopic batch experiments, microscopic spectroscopy analysis, and theoretical calculations. The adsorption properties of various MOF-based materials are assessed and compared with those of other widely used adsorbents. Finally, we propose our personal insights into future research opportunities and challenges in the hope of stimulating more researchers to engage in this new field of MOF-based materials for environmental pollution management.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Applications of water stable metal–organic frameworks

                Bookmark

                Author and article information

                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                November 2022
                November 2022
                : 307
                : 135633
                Article
                10.1016/j.chemosphere.2022.135633
                8a995354-6c64-4554-a87c-ef727f4ece14
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article