2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metabolitos bioactivos generados por la disbiosis intestinal y sus implicaciones fisiopatológicas en la enfermedad cardiovascular Translated title: Bioactive metabolites generated by intestinal dysbiosis and their pathophysiological implications in cardiovascular disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RESUMEN Introducción: La disbiosis conocida como la alteración de la relación simbiótica entre la microbiota intestinal y el huésped están implicados en la patogenia de la enfermedad cardiovascular aterosclerótica. Objetivo: Realizar una revisión documental sobre los mecanismos fisiopatológicos que relacionan los metabolitos bioactivos generados por la disbiosis intestinal con el desarrollo y progresión de la enfermedad cardiovascular aterosclerótica. Métodos: Se utilizó el motor de búsqueda Google Académico y se consultaron artículos de libre acceso en las bases de datos Pubmed, SciELO, Lilacs, Cumed y Hinari desde septiembre 2020 hasta el mes de marzo 2021. Las palabras clave utilizadas para esta revisión fueron: “microbioma”, “microbiota intestinal”, “disbiosis”, “aterosclerosis”, “enfermedad cardiovascular” y sus equivalentes en inglés, según el descriptor de Ciencias de la Salud (DeCS). Se consideraron artículos originales, de revisión, revisiones sistemáticas y metaanálisis posteriores al año 2015. Se revisaron un total de 73 artículos. Desarrollo: Las relaciones fisiopatológicas entre la disbiosis intestinal y las enfermedades cardiovasculares son complejas, ya que se influyen mutuamente a través de los sus toxinas endógenas (metabolitos bioactivos), el sistema circulatorio, las respuestas inmunitarias y los cambios metabólicos. Las investigaciones futuras deberían centrarse en dilucidar los actores moleculares subyacentes e identificar si las vías que interconectan la disbiosis intestinal con la ECA son causales, correlacionales o consecuentes. Conclusiones: La evidencia acumulada sostiene que la disbiosis de la microbiota intestinal está involucrada en la síntesis de metabolitos proaterogénicos los cuales modulan los mecanismos implicados en la fisiopatología de la ECA.

          Translated abstract

          ABSTRACT Introduction: Dysbiosis is known as the alteration of the symbiotic relationship between the intestinal microbiota and the host is involved in the pathogenesis of atherosclerotic cardiovascular disease. Objective: To carry out a documentary review on the pathophysiological mechanisms that relate the bioactive metabolites generated by intestinal dysbiosis with the development and progression of atherosclerotic cardiovascular disease. Methods: The Google Scholar search engine was used and free access articles were consulted in Pubmed, SciELO, Lilacs, Cumed and Hinari databases from September 2020 to March 2021. The keywords used for this review were “microbiome”, “gut microbiota”, “dysbiosis”, “atherosclerosis”, “cardiovascular disease” and their English equivalents, according to the Health Sciences (DeCS) descriptor. Original articles, review articles, systematic reviews and meta-analyses after 2015 were considered. A total of 73 articles were reviewed. Findings: The pathophysiological relationships between intestinal dysbiosis and cardiovascular diseases are complex, since they influence each other through their endogenous toxins (bioactive metabolites), the circulatory system, immune responses and metabolic changes. Future research should focus on elucidating the underlying molecular players and on identifying whether the pathways that interconnect gut dysbiosis with ACE are causal, correlational, or consequential. Conclusions: The accumulated evidence supports that the dysbiosis of the intestinal microbiota is involved in the synthesis of proatherogenic metabolites which modulate the mechanisms involved in the pathophysiology of ACE.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Gut microbiota and cardiovascular disease: opportunities and challenges

          Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Defining Dysbiosis for a Cluster of Chronic Diseases

            The prevalence of many chronic diseases has increased over the last decades. It has been postulated that dysbiosis driven by environmental factors such as antibiotic use is shifting the microbiome in ways that increase inflammation and the onset of chronic disease. Dysbiosis can be defined through the loss or gain of bacteria that either promote health or disease, respectively. Here we use multiple independent datasets to determine the nature of dysbiosis for a cluster of chronic diseases that includes urinary stone disease (USD), obesity, diabetes, cardiovascular disease, and kidney disease, which often exist as co-morbidities. For all disease states, individuals exhibited a statistically significant association with antibiotics in the last year compared to healthy counterparts. There was also a statistically significant association between antibiotic use and gut microbiota composition. Furthermore, each disease state was associated with a loss of microbial diversity in the gut. Three genera, Bacteroides, Prevotella, and Ruminococcus, were the most common dysbiotic taxa in terms of being enriched or depleted in disease populations and was driven in part by the diversity of operational taxonomic units (OTUs) within these genera. Results of the cross-sectional analysis suggest that antibiotic-driven loss of microbial diversity may increase the risk for chronic disease. However, longitudinal studies are needed to confirm the causative effect of diversity loss for chronic disease risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism

              The global obesity epidemic has necessitated the search for better intervention strategies including the exploitation of the health benefits of some gut microbiota and their metabolic products. Therefore, we examined the gut microbial composition and mechanisms of interaction with the host in relation to homoeostatic energy metabolism and pathophysiology of dysbiosis-induced metabolic inflammation and obesity. We also discussed the eubiotic, health-promoting effects of probiotics and prebiotics as well as epigenetic modifications associated with gut microbial dysbiosis and risk of obesity. High-fat/carbohydrate diet programmes the gut microbiota to one predominated by Firmicutes ( Clostridium ), Prevotella and Methanobrevibacter but deficient in beneficial genera/species such as Bacteroides , Bifidobacterium , Lactobacillus and Akkermansia . Altered gut microbiota is associated with decreased expression of SCFA that maintain intestinal epithelial barrier integrity, reduce bacterial translocation and inflammation and increase expression of hunger-suppressing hormones. Reduced amounts of beneficial micro-organisms also inhibit fasting-induced adipocyte factor expression leading to dyslipidaemia. A low-grade chronic inflammation (metabolic endotoxaemia) ensues which culminates in obesity and its co-morbidities. The synergy of high-fat diet and dysbiotic gut microbiota initiates a recipe that epigenetically programmes the host for increased adiposity and poor glycaemic control. Interestingly, these obesogenic mechanistic pathways that are transmittable from one generation to another can be modulated through the administration of probiotics, prebiotics and synbiotics. Though the influence of gut microbiota on the risk of obesity and several intervention strategies have been extensively demonstrated in animal models, application in humans still requires further robust investigation.
                Bookmark

                Author and article information

                Journal
                med
                Revista Cubana de Medicina
                Rev cubana med
                ECIMED (Ciudad de la Habana, , Cuba )
                0034-7523
                1561-302X
                March 2022
                : 61
                : 1
                : e2584
                Affiliations
                [2] La Habana orgnameUniversidad de Ciencias Médicas de La Habana orgdiv1Facultad de Ciencias Médicas de Mayabeque Cuba
                [1] La Habana orgnameUniversidad de Ciencias Médicas de las Fuerzas Armadas Revolucionarias Cuba
                Article
                S0034-75232022000100013 S0034-7523(22)06100100013
                8a915e99-90fa-4b47-a750-a4f0320329df

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 23 April 2021
                : 07 May 2021
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 73, Pages: 0
                Product

                SciELO Cuba

                Categories
                ARTICULOS DE REVISIÓN

                cardiovascular disease,atherosclerosis,dysbiosis,intestinal microbiota,disbiosis,microbiota intestinal,metabolic syndrome,aterosclerosis,enfermedad cardiovascular,síndrome metabólico

                Comments

                Comment on this article