196
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          An algorithm for progressive multiple alignment of sequences with insertions.

          Dynamic programming algorithms guarantee to find the optimal alignment between two sequences. For more than a few sequences, exact algorithms become computationally impractical, and progressive algorithms iterating pairwise alignments are widely used. These heuristic methods have a serious drawback because pairwise algorithms do not differentiate insertions from deletions and end up penalizing single insertion events multiple times. Such an unrealistically high penalty for insertions typically results in overmatching of sequences and an underestimation of the number of insertion events. We describe a modification of the traditional alignment algorithm that can distinguish insertion from deletion and avoid repeated penalization of insertions and illustrate this method with a pair hidden Markov model that uses an evolutionary scoring function. In comparison with a traditional progressive alignment method, our algorithm infers a greater number of insertion events and creates gaps that are phylogenetically consistent but spatially less concentrated. Our results suggest that some insertion/deletion "hot spots" may actually be artifacts of traditional alignment algorithms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prediction of lipoprotein signal peptides in Gram-negative bacteria.

            A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Complex Glycan Catabolism by the Human Gut Microbiota: The Bacteroidetes Sus-like Paradigm*

              Trillions of microbes inhabit the distal gut of adult humans. They have evolved to compete efficiently for nutrients, including a wide array of chemically diverse, complex glycans present in our diets, secreted by our intestinal mucosa, and displayed on the surfaces of other gut microbes. Here, we review how members of the Bacteroidetes, one of two dominant gut-associated bacterial phyla, process complex glycans using a series of similarly patterned, cell envelope-associated multiprotein systems. These systems provide insights into how gut, as well as terrestrial and aquatic, Bacteroidetes survive in highly competitive ecosystems.
                Bookmark

                Author and article information

                Journal
                Nature Communications
                Nat Commun
                Springer Science and Business Media LLC
                2041-1723
                December 2018
                March 13 2018
                December 2018
                : 9
                : 1
                Article
                10.1038/s41467-018-03366-x
                29535379
                8a8ca853-b583-4268-a2f2-20b8f9b7b399
                © 2018

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article