3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic prediction based on preselected single‐nucleotide polymorphisms from genome‐wide association study and imputed whole‐genome sequence data annotation for growth traits in Duroc pigs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of whole‐genome sequence (WGS) data is expected to improve genomic prediction (GP) power of complex traits because it may contain mutations that in strong linkage disequilibrium pattern with causal mutations. However, a few previous studies have shown no or small improvement in prediction accuracy using WGS data. Incorporating prior biological information into GP seems to be an attractive strategy that might improve prediction accuracy. In this study, a total of 6334 pigs were genotyped using 50K chips and subsequently imputed to the WGS level. This cohort includes two prior discovery populations that comprise 294 Landrace pigs and 186 Duroc pigs, as well as two validation populations that consist of 3770 American Duroc pigs and 2084 Canadian Duroc pigs. Then we used annotation information and genome‐wide association study (GWAS) from the WGS data to make GP for six growth traits in two Duroc pig populations. Based on variant annotation, we partitioned different genomic classes, such as intron, intergenic, and untranslated regions, for imputed WGS data. Based on GWAS results of WGS data, we obtained trait‐associated single‐nucleotide polymorphisms (SNPs). We then applied the genomic feature best linear unbiased prediction (GFBLUP) and genomic best linear unbiased prediction (GBLUP) models to estimate the genomic estimated breeding values for growth traits with these different variant panels, including six genomic classes and trait‐associated SNPs. Compared with 50K chip data, GBLUP with imputed WGS data had no increase in prediction accuracy. Using only annotations resulted in no increase in prediction accuracy compared to GBLUP with 50K, but adding annotation information into the GFBLUP model with imputed WGS data could improve the prediction accuracy with increases of 0.00%–2.82%. In conclusion, a GFBLUP model that incorporated prior biological information might increase the advantage of using imputed WGS data for GP.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          PLINK: a tool set for whole-genome association and population-based linkage analyses.

          Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3.

            We describe a new computer program, SnpEff, for rapidly categorizing the effects of variants in genome sequences. Once a genome is sequenced, SnpEff annotates variants based on their genomic locations and predicts coding effects. Annotated genomic locations include intronic, untranslated region, upstream, downstream, splice site, or intergenic regions. Coding effects such as synonymous or non-synonymous amino acid replacement, start codon gains or losses, stop codon gains or losses, or frame shifts can be predicted. Here the use of SnpEff is illustrated by annotating ~356,660 candidate SNPs in ~117 Mb unique sequences, representing a substitution rate of ~1/305 nucleotides, between the Drosophila melanogaster w(1118); iso-2; iso-3 strain and the reference y(1); cn(1) bw(1) sp(1) strain. We show that ~15,842 SNPs are synonymous and ~4,467 SNPs are non-synonymous (N/S ~0.28). The remaining SNPs are in other categories, such as stop codon gains (38 SNPs), stop codon losses (8 SNPs), and start codon gains (297 SNPs) in the 5'UTR. We found, as expected, that the SNP frequency is proportional to the recombination frequency (i.e., highest in the middle of chromosome arms). We also found that start-gain or stop-lost SNPs in Drosophila melanogaster often result in additions of N-terminal or C-terminal amino acids that are conserved in other Drosophila species. It appears that the 5' and 3' UTRs are reservoirs for genetic variations that changes the termini of proteins during evolution of the Drosophila genus. As genome sequencing is becoming inexpensive and routine, SnpEff enables rapid analyses of whole-genome sequencing data to be performed by an individual laboratory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GCTA: a tool for genome-wide complex trait analysis.

              For most human complex diseases and traits, SNPs identified by genome-wide association studies (GWAS) explain only a small fraction of the heritability. Here we report a user-friendly software tool called genome-wide complex trait analysis (GCTA), which was developed based on a method we recently developed to address the "missing heritability" problem. GCTA estimates the variance explained by all the SNPs on a chromosome or on the whole genome for a complex trait rather than testing the association of any particular SNP to the trait. We introduce GCTA's five main functions: data management, estimation of the genetic relationships from SNPs, mixed linear model analysis of variance explained by the SNPs, estimation of the linkage disequilibrium structure, and GWAS simulation. We focus on the function of estimating the variance explained by all the SNPs on the X chromosome and testing the hypotheses of dosage compensation. The GCTA software is a versatile tool to estimate and partition complex trait variation with large GWAS data sets.
                Bookmark

                Author and article information

                Contributors
                wzfemail@163.com
                jieyang2012@hotmail.com
                Journal
                Evol Appl
                Evol Appl
                10.1111/(ISSN)1752-4571
                EVA
                Evolutionary Applications
                John Wiley and Sons Inc. (Hoboken )
                1752-4571
                15 February 2024
                February 2024
                : 17
                : 2 ( doiID: 10.1111/eva.v17.2 )
                : e13651
                Affiliations
                [ 1 ] College of Animal Science and National Engineering Research Center for Breeding Swine Industry South China Agricultural University Guangzhou China
                [ 2 ] Guangdong Provincial Key Laboratory of Agro‐animal Genomics and Molecular Breeding South China Agricultural University Guangzhou China
                [ 3 ] Guangdong Zhongxin Breeding Technology Co., Ltd Guangzhou China
                [ 4 ] College of Animal Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China
                Author notes
                [*] [* ] Correspondence

                Jie Yang and Zhenfang Wu, College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China.

                Email: jieyang2012@ 123456hotmail.com and wzfemail@ 123456163.com

                Author information
                https://orcid.org/0000-0002-7031-2160
                Article
                EVA13651 EVA-2022-317-OA.R2
                10.1111/eva.13651
                10868536
                38362509
                8a85b428-2f59-4e45-9006-59975700d996
                © 2024 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 October 2023
                : 11 December 2022
                : 13 January 2024
                Page count
                Figures: 2, Tables: 4, Pages: 18, Words: 8462
                Funding
                Funded by: A National Key Research and Development Program of China
                Award ID: 2023YFD1300201
                Funded by: a key Technologies R&D Program of Guangdong Province project
                Award ID: 2022B0202090002
                Funded by: a Local Innovative and Research Teams Project of Guangdong Province
                Award ID: 2019BT02N630
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                February 2024
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.3.8 mode:remove_FC converted:15.02.2024

                Evolutionary Biology
                annotation,genomic prediction,growth traits,pigs
                Evolutionary Biology
                annotation, genomic prediction, growth traits, pigs

                Comments

                Comment on this article