5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exhumation of (ultra-)high-pressure terranes: concepts and mechanisms

      Solid Earth
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> The formation and exhumation of high and ultra-high-pressure, (U)HP, rocks of crustal origin appears to be ubiquitous during Phanerozoic plate subduction and continental collision events. Exhumation of (U)HP material has been shown in some orogens to have occurred only once, during a single short-lived event; in other cases exhumation appears to have occurred multiple discrete times or during a single, long-lived, protracted event. It is becoming increasingly clear that no single exhumation mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. Subduction zone style and internal force balance change in both time and space, responding to changes in width, steepness, composition of subducting material and velocity of subduction. In order for continental crust, which is relatively buoyant compared to the mantle even when metamorphosed to (U)HP assemblages, to be subducted to (U)HP conditions, it must remain attached to a stronger and denser substrate. Buoyancy and external tectonic forces drive exhumation, although the changing spatial and temporal dominance of different driving forces still remains unclear. Exhumation may involve whole-scale detachment of the terrane from the subducting slab followed by exhumation within a subduction channel (perhaps during continued subduction) or a reversal in motion of the entire plate (eduction) following the removal of a lower part of the subducting slab. Weakening mechanisms that may be responsible for the detachment of deeply subducted crust from its stronger, denser substrate include strain weakening, hydration, melting, grain size reduction and the development of foliation. These may act locally to form narrow high-strain shear zones separating stronger, less-strained crust or may act on the bulk of the subducted material, allowing whole-scale flow. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Future research directions include identifying temporal and spatial changes in exhumation mechanisms within different tectonic environments, and determining the factors that influence those changes.</p>

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation.

          Recent interpretations of Himalayan-Tibetan tectonics have proposed that channel flow in the middle to lower crust can explain outward growth of the Tibetan plateau, and that ductile extrusion of high-grade metamorphic rocks between coeval normal- and thrust-sense shear zones can explain exhumation of the Greater Himalayan sequence. Here we use coupled thermal-mechanical numerical models to show that these two processes-channel flow and ductile extrusion-may be dynamically linked through the effects of surface denudation focused at the edge of a plateau that is underlain by low-viscosity material. Our models provide an internally self-consistent explanation for many observed features of the Himalayan-Tibetan system.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dislocation creep regimes in quartz aggregates

                Bookmark

                Author and article information

                Journal
                Solid Earth
                Solid Earth
                Copernicus GmbH
                1869-9529
                2013
                February 13 2013
                : 4
                : 1
                : 75-92
                Article
                10.5194/se-4-75-2013
                8a4c7bfc-9f7f-4157-b0bf-c754bced3005
                © 2013

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article