7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual Microbial Inoculation, a Game Changer? – Bacterial Biostimulants With Multifunctional Growth Promoting Traits to Mitigate Salinity Stress in Spring Mungbean

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soil microbes play a vital role in improving plant growth, soil health, ameliorate biotic/abiotic stress and enhance crop productivity. The present study was aimed to investigate a coordinated effect of compatible consortium [salt tolerating Rhizobium and rhizobacterium with 1-aminocyclopropane-1-carboxylate (ACC) deaminase] in enhancing plant growth promoting (PGP) traits, symbiotic efficiency, nutrient acquisition, anti-oxidative enzymes, grain yield and associated profitability in spring mungbean. We identified a non-pathogenic compatible Rhizobium sp. LSMR-32 (MH644039.1) and Enterococcus mundtii LSMRS-3 (MH644178.1) from salt affected areas of Punjab, India and the same were assessed to develop consortium biofertilizer based on salt tolerance, multifarious PGP traits, antagonistic defense activities and presence of nifH, acds, pqq, and ipdc genes. Indole Acetic acid (IAA), P-solubilization, biofilm formation, exo-polysaccharides, siderophore, salt tolerance, ACC deaminase activities were all found highly significant in dual inoculant (LSMR-32 + LSMRS-3) treatment compared to LSMR-32 alone. Under saline soil conditions, dual inoculant showed a higher seed germination, plant height, biomass, chlorophyll content and macro and micro-nutrient uptake, than un-inoculated control. However, symbiotic (nodulation, nodule biomass and leghaemoglobin content) and soil quality parameters (phosphatase and soil dehydrogenase enzymes) increased numerically with LSMR-32 + LSMRS-3 over Rhizobium sp. LSMR-32 alone. Dual bacterial inoculation (LSMR-32 + LSMRS-3) increased the proline content (2.05 fold), anti-oxidative enzymes viz., superoxide dismutase (1.50 fold), catalase (1.43 fold) and peroxidase (3.88 folds) in contrast to control treatment. Decreased Na + accumulation and increased K + uptake resulted in favorable K +/Na + ratio through ion homeostasis. Co-inoculation of Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-3 significantly improved the grain yield by 8.92% and led to superior B: C ratio over Rhizobium sp. alone under salt stress. To best of our knowledge this is perhaps the first field report from Indian soils that largely describes dual inoculation of Rhizobium sp. LSMR-32 and Enterococcus mundtii LSMRS-3 and the same can be considered as a game-changer approach to simultaneously induce salt tolerance and improve productivity in spring mungbean under saline stress conditions.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

          We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Use of p-nitrophenyl phosphate for assay of soil phosphatase activity

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation

              Salinity is one of the most brutal environmental factors limiting the productivity of crop plants because most of the crop plants are sensitive to salinity caused by high concentrations of salts in the soil, and the area of land affected by it is increasing day by day. For all important crops, average yields are only a fraction – somewhere between 20% and 50% of record yields; these losses are mostly due to drought and high soil salinity, environmental conditions which will worsen in many regions because of global climate change. A wide range of adaptations and mitigation strategies are required to cope with such impacts. Efficient resource management and crop/livestock improvement for evolving better breeds can help to overcome salinity stress. However, such strategies being long drawn and cost intensive, there is a need to develop simple and low cost biological methods for salinity stress management, which can be used on short term basis. Microorganisms could play a significant role in this respect, if we exploit their unique properties such as tolerance to saline conditions, genetic diversity, synthesis of compatible solutes, production of plant growth promoting hormones, bio-control potential, and their interaction with crop plants.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                15 January 2021
                2020
                : 11
                : 600576
                Affiliations
                [1] 1Department of Microbiology, Punjab Agricultural University , Ludhiana, India
                [2] 2Department of Plant Breeding and Genetics, Punjab Agricultural University , Ludhiana, India
                [3] 3Department of Soil Science, Punjab Agricultural University , Ludhiana, India
                [4] 4World Vegetable Center, South Asia , Hyderabad, India
                [5] 5Regional Research Station, Punjab Agricultural University , Bathinda, India
                Author notes

                Edited by: Markus Puschenreiter, University of Natural Resources and Life Sciences, Vienna, Austria

                Reviewed by: Clarisse Brígido, University of Evora, Portugal; Mahaveer P. Sharma, ICAR Indian Institute of Soybean Research, India

                *Correspondence: Kailash Chand Kumawat, kailash-cobsmb@ 123456pau.edu

                This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.600576
                7874087
                33584566
                8a0816b0-2241-4da9-9715-af392dc8fb18
                Copyright © 2021 Kumawat, Sharma, Nagpal, Gupta, Sirari, Nair, Bindumadhava and Singh.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 August 2020
                : 16 December 2020
                Page count
                Figures: 5, Tables: 5, Equations: 2, References: 159, Pages: 24, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                acc deaminase,anti-oxidative enzymes,enterococcus mundtii,nutrient acquisition,rhizobium sp.

                Comments

                Comment on this article