0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Regeneration of Three-Disulfide Mutants of Bovine Pancreatic Ribonuclease A Missing the 65−72 Disulfide Bond:  Characterization of a Minor Folding Pathway of Ribonuclease A and Kinetic Roles of Cys65 and Cys72†

      , ,
      Biochemistry
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The oxidative regeneration pathways of two three-disulfide mutants of bovine pancreatic ribonuclease A (RNase A) missing the 65-72 disulfide bond, [C65S,C72S] and [C65A,C72A], have been studied by using oxidized dithiothreitol (DTTox) as an oxidizing agent and 2-aminoethylmethanethiosulfonate (AEMTS) as a thiol-blocking agent at 25 degrees C and pH 8.0. These mutants are analogues of the des-[65-72] intermediate, which is one of the two major three-disulfide intermediates that follow after the transition states in the regeneration pathways of wild-type RNase A [Rothwarf, D. M., Li, Y.-J., and Scheraga, H. A. (1998) Biochemistry 37, 3760-3766, 3767-3776.]. Both mutants folded through the same pathway but at a rate lower than that of the wild-type protein. The major rate-determining step in the regeneration of these mutants was determined to be the oxidation from the two-disulfide intermediates (2S) to the post-transition-state three-disulfide intermediate (3S*), suggesting the existence of a minor oxidation pathway (2S --> 3S*, where 3S* is des-[65-72]) in the regeneration of the wild-type protein, in addition to one of the two major disulfide-rearrangement pathways (3S --> des-[65-72]). The regeneration intermediates of these mutants (R, 1S, 2S, and 3S) participate in a steady state with a kinetic behavior resembling that of the wild-type protein. However, the apparent equilibrium constants () in the steady state, averaged with statistical factors for these mutants, are significantly smaller than those for the wild-type protein, indicating that the intermediates in the regeneration of the mutants are relatively less stable by 0.32 kcal/mol. This difference is due to the decrease in the average rate constants for intramolecular disulfide-bond formation () for the mutant proteins. Loop entropy calculations indicate that the increase in the average length of all possible disulfide loops of the mutants due to the replacement of Cys65 and Cys72 is not sufficient to account for the observed reduction of the values of for the mutants. Therefore, it is the removal of energetic factors (arising from the loss of the 65-72 disulfide loop) that leads to deceleration of the regeneration of the mutant proteins. The formation of the 65-72 disulfide loop in the regeneration of wild-type RNase A appears to facilitate the subsequent folding events.

          Related collections

          Author and article information

          Journal
          Biochemistry
          Biochemistry
          American Chemical Society (ACS)
          0006-2960
          1520-4995
          March 1998
          March 1998
          : 37
          : 13
          : 4490-4501
          Article
          10.1021/bi9725327
          9521769
          89d49cde-1295-4ac5-9b0a-f78ea73ee76e
          © 1998
          History

          Comments

          Comment on this article