8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tissue Engineering, Morphogenesis, and Regeneration of the Periodontal Tissues By Bone Morphogenetic Proteins

      ,
      Critical Reviews in Oral Biology & Medicine
      SAGE Publications

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Novel regulators of bone formation: molecular clones and activities.

          Protein extracts derived from bone can initiate the process that begins with cartilage formation and ends in de novo bone formation. The critical components of this extract, termed bone morphogenetic protein (BMP), that direct cartilage and bone formation as well as the constitutive elements supplied by the animal during this process have long remained unclear. Amino acid sequence has been derived from a highly purified preparation of BMP from bovine bone. Now, human complementary DNA clones corresponding to three polypeptides present in this BMP preparation have been isolated, and expression of the recombinant human proteins have been obtained. Each of the three (BMP-1, BMP-2A, and BMP-3) appears to be independently capable of inducing the formation of cartilage in vivo. Two of the encoded proteins (BMP-2A and BMP-3) are new members of the TGF-beta supergene family, while the third, BMP-1, appears to be a novel regulatory molecule.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the repair potential of periodontal tissues.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New attachment following surgical treatment of human periodontal disease.

              The present experiment was undertaken to test the hypothesis that new connective tissue attachment may form on a previously periodontitis involved root surface provided cells originating from the periodontal ligament are enabled to repopulate the root surface during healing. A mandibular incisor with advanced periodontal disease of long standing (the distance between the cemento-enamel junction and the alveolar bone crest was 9 mm) was subjected to periodontal surgery using a technique which during healing prevented the dentogingival epithelium and the gingival connective tissue from reaching contact with the curetted root surface. Preference was hereby given to the periodontal ligament cells to repopulate the previously diseased root surface. After 3 months of healing a block biopsy containing the incisor and surrounding tissue was sampled. The histological analysis revealed that new cementum with inserting principal fibers had formed on the previously diseased root surface. This new attachment extended in coronal direction to a level 5 mm coronal to the alveolar bone crest. This finding suggests that new attachment can be achieved by cells originating from the periodontal ligament and demonstrates that the concept that the periodontitis affected root surface is a major preventive factor for new attachment is invalid.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Oral Biology & Medicine
                Critical Reviews in Oral Biology & Medicine
                SAGE Publications
                1045-4411
                1544-1113
                December 2016
                December 2016
                : 8
                : 2
                : 154-163
                Article
                10.1177/10454411970080020401
                89aa2b22-885b-481b-960d-5a137968aac2
                © 2016

                http://journals.sagepub.com/page/policies/text-and-data-mining-license

                History

                Comments

                Comment on this article