2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of cyclic peptides to induce crystallization: case study with prolyl hydroxylase domain 2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crystallization is the bottleneck in macromolecular crystallography; even when a protein crystallises, crystal packing often influences ligand-binding and protein–protein interaction interfaces, which are the key points of interest for functional and drug discovery studies. The human hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) readily crystallises as a homotrimer, but with a sterically blocked active site. We explored strategies aimed at altering PHD2 crystal packing by protein modification and molecules that bind at its active site and elsewhere. Following the observation that, despite weak inhibition/binding in solution, succinamic acid derivatives readily enable PHD2 crystallization, we explored methods to induce crystallization without active site binding. Cyclic peptides obtained via mRNA display bind PHD2 tightly away from the active site. They efficiently enable PHD2 crystallization in different forms, both with/without substrates, apparently by promoting oligomerization involving binding to the C-terminal region. Although our work involves a specific case study, together with those of others, the results suggest that mRNA display-derived cyclic peptides may be useful in challenging protein crystallization cases.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing.

          HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation.

            Hypoxia-inducible factor (HIF) is a transcriptional complex that plays a central role in the regulation of gene expression by oxygen. In oxygenated and iron replete cells, HIF-alpha subunits are rapidly destroyed by a mechanism that involves ubiquitylation by the von Hippel-Lindau tumor suppressor (pVHL) E3 ligase complex. This process is suppressed by hypoxia and iron chelation, allowing transcriptional activation. Here we show that the interaction between human pVHL and a specific domain of the HIF-1alpha subunit is regulated through hydroxylation of a proline residue (HIF-1alpha P564) by an enzyme we have termed HIF-alpha prolyl-hydroxylase (HIF-PH). An absolute requirement for dioxygen as a cosubstrate and iron as cofactor suggests that HIF-PH functions directly as a cellular oxygen sensor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.

              HIF plays a central role in the transcriptional response to changes in oxygen availability. The PHD family of oxygen-dependent prolyl hydroxylases plays a pivotal role in regulating HIF stability. The biochemical properties of these enzymes make them well suited to act as oxygen sensors. They also respond to other intracellular signals, including reactive oxygen species, nitric oxide, and certain metabolites, that can modulate the hypoxic response. HIF transcriptional activity is further tuned by FIH1-mediated asparagine hydroxylation. HIF affects signaling pathways that influence development, metabolism, inflammation, and integrative physiology. Accordingly, HIF-modulatory drugs are now being developed for diverse diseases.
                Bookmark

                Author and article information

                Contributors
                christopher.schofield@chem.ox.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                15 December 2020
                15 December 2020
                2020
                : 10
                : 21964
                Affiliations
                [1 ]GRID grid.4991.5, ISNI 0000 0004 1936 8948, Chemistry Research Laboratory, Department of Chemistry, , University of Oxford, ; Oxford, OX1 3TA UK
                [2 ]GRID grid.1006.7, ISNI 0000 0001 0462 7212, Chemistry – School of Natural and Environmental Sciences, , Newcastle University, ; Newcastle upon Tyne, NE1 7RU UK
                Article
                76307
                10.1038/s41598-020-76307-8
                7738489
                33319810
                898c4ce4-2799-4eb4-8cf6-041ae28b2d84
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 September 2020
                : 27 October 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                nmr spectroscopy,x-ray crystallography,oxidoreductases,peptides,chemical biology
                Uncategorized
                nmr spectroscopy, x-ray crystallography, oxidoreductases, peptides, chemical biology

                Comments

                Comment on this article