40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zuo Jin Wan Reverses the Resistance of Colorectal Cancer to Oxaliplatin by Regulating the MALAT1/miR-200s/JNK Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Oxaliplatin (L-OHP) is a common chemotherapy drug used in the treatment of colorectal cancer (CRC). Our previous work showed that Zuo Jin Wan (ZJW), a traditional Chinese medicine prescription, could improve sensitivity to L-OHP in the treatment of CRC, but the detailed mechanism is not clear. In previous mechanistic studies, we found that the miR-200s expression in CRC is associated with L-OHP sensitivity through regulation of MDR1/p-gp and the downstream c-JunN-terminal kinase (JNK) signaling pathway. Moreover, lncRNA-MALAT1 offers great potential in the regulation of drug resistance by interacting with miR-200s. Therefore, in this work, we explored whether ZJW could reverse L-OHP resistance in CRC by regulating MALAT1, miR-200s, and the downstream signaling pathway.

          Methods

          Cell Counting Kit-8 and flow cytometry were used to detect the effects of ZJW combined with L-OHP on chemotherapy tolerance and cell apoptosis of HCT116/L-OHP cells. Western blotting and quantitative real-time PCR (qRT-PCR) were used to detect the activation of the JNK signaling pathway and the protein and mRNA expression levels of the drug resistance-related MDR1/ABCB1 gene in HCT116/L-OHP cells treated with ZJW. The binding sites of MALAT1 and miR-200s were predicted by bioinformatics tools and confirmed by qRT-PCR. qRT-PCR was used to detect the expression of miR-200s and MALAT1 in HCT116/L-OHP cells treated with ZJW. A xenograft model of CRC in nude mice was established to observe the effect of ZJW combined with L-OHP on the growth of subcutaneously transplanted tumors. Apoptosis in tumor cells was detected by TUNEL staining. The activation of the JNK signaling pathway and the expression of drug resistance-related proteins were detected by immunohistochemistry and immunofluorescence. qRT-PCR was used to detect the expression of miR-200s and the MALAT1 gene in the tumors.

          Results

          Our study showed that ZJW could significantly decrease the proliferation and promote apoptosis of HCT116/L-OHP cells treated with L-OHP. We further proved that ZJW could reverse the drug resistance of HCT116/L-OHP cells by reducing MALAT1, indirectly upregulating miR-200s, alleviating the activation of the JNK signaling axis, and downregulating the expression of resistance proteins such as MDR1/ABCB1 and ABCG2. ZJW combined with L-OHP inhibited the growth of subcutaneously transplanted tumors and induced apoptosis in nude mice. ZJW reduced the expression of MALAT1 and upregulated the expression of miR-200s in transplanted tumors. In addition, ZJW also alleviated the activation of the JNK signaling pathway while reducing the expression of MDR1/ABCB1 and ABCG2.

          Conclusions

          Our study identified that MALAT1 promotes colorectal cancer resistance to oxaliplatin by reducing the miR-200s expression. ZJW may reverse chemoresistance by inhibiting the expression of MALAT1 and regulating the miR-200s/JNK pathway, providing an experimental basis for the clinical application of ZJW in relieving chemotherapy resistance.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics, 2020

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on population-based cancer occurrence. Incidence data (through 2016) were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data (through 2017) were collected by the National Center for Health Statistics. In 2020, 1,806,590 new cancer cases and 606,520 cancer deaths are projected to occur in the United States. The cancer death rate rose until 1991, then fell continuously through 2017, resulting in an overall decline of 29% that translates into an estimated 2.9 million fewer cancer deaths than would have occurred if peak rates had persisted. This progress is driven by long-term declines in death rates for the 4 leading cancers (lung, colorectal, breast, prostate); however, over the past decade (2008-2017), reductions slowed for female breast and colorectal cancers, and halted for prostate cancer. In contrast, declines accelerated for lung cancer, from 3% annually during 2008 through 2013 to 5% during 2013 through 2017 in men and from 2% to almost 4% in women, spurring the largest ever single-year drop in overall cancer mortality of 2.2% from 2016 to 2017. Yet lung cancer still caused more deaths in 2017 than breast, prostate, colorectal, and brain cancers combined. Recent mortality declines were also dramatic for melanoma of the skin in the wake of US Food and Drug Administration approval of new therapies for metastatic disease, escalating to 7% annually during 2013 through 2017 from 1% during 2006 through 2010 in men and women aged 50 to 64 years and from 2% to 3% in those aged 20 to 49 years; annual declines of 5% to 6% in individuals aged 65 years and older are particularly striking because rates in this age group were increasing prior to 2013. It is also notable that long-term rapid increases in liver cancer mortality have attenuated in women and stabilized in men. In summary, slowing momentum for some cancers amenable to early detection is juxtaposed with notable gains for other common cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mechanisms of Multidrug Resistance in Cancer Chemotherapy

              Cancer is one of the main causes of death worldwide. Despite the significant development of methods of cancer healing during the past decades, chemotherapy still remains the main method for cancer treatment. Depending on the mechanism of action, commonly used chemotherapeutic agents can be divided into several classes (antimetabolites, alkylating agents, mitotic spindle inhibitors, topoisomerase inhibitors, and others). Multidrug resistance (MDR) is responsible for over 90% of deaths in cancer patients receiving traditional chemotherapeutics or novel targeted drugs. The mechanisms of MDR include elevated metabolism of xenobiotics, enhanced efflux of drugs, growth factors, increased DNA repair capacity, and genetic factors (gene mutations, amplifications, and epigenetic alterations). Rapidly increasing numbers of biomedical studies are focused on designing chemotherapeutics that are able to evade or reverse MDR. The aim of this review is not only to demonstrate the latest data on the mechanisms of cellular resistance to anticancer agents currently used in clinical treatment but also to present the mechanisms of action of novel potential antitumor drugs which have been designed to overcome these resistance mechanisms. Better understanding of the mechanisms of MDR and targets of novel chemotherapy agents should provide guidance for future research concerning new effective strategies in cancer treatment.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2022
                7 October 2022
                7 October 2022
                : 2022
                : 3032407
                Affiliations
                1Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
                2Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
                Author notes

                Academic Editor: Talha Bin Emran

                Author information
                https://orcid.org/0000-0001-8676-9678
                https://orcid.org/0000-0002-4565-7693
                https://orcid.org/0000-0003-4837-2324
                https://orcid.org/0000-0002-2513-5329
                https://orcid.org/0000-0002-1266-271X
                https://orcid.org/0000-0002-7723-0360
                https://orcid.org/0000-0002-1899-0204
                https://orcid.org/0000-0002-2733-3978
                Article
                10.1155/2022/3032407
                9568309
                36248422
                894377f9-e5b9-4e72-a2af-e55c8b76a6a1
                Copyright © 2022 Zhenzhen Wei et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 March 2022
                : 2 September 2022
                : 10 September 2022
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81874399
                Funded by: Science Foundation for Shanghai Committee of Science Project
                Award ID: 19401972000
                Award ID: 21S21901400
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article