11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A clinical guide to the pathophysiology, diagnosis and treatment of osteosarcopenia

      , , ,
      Maturitas
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Sarcopenia: revised European consensus on definition and diagnosis

          Abstract Background in 2010, the European Working Group on Sarcopenia in Older People (EWGSOP) published a sarcopenia definition that aimed to foster advances in identifying and caring for people with sarcopenia. In early 2018, the Working Group met again (EWGSOP2) to update the original definition in order to reflect scientific and clinical evidence that has built over the last decade. This paper presents our updated findings. Objectives to increase consistency of research design, clinical diagnoses and ultimately, care for people with sarcopenia. Recommendations sarcopenia is a muscle disease (muscle failure) rooted in adverse muscle changes that accrue across a lifetime; sarcopenia is common among adults of older age but can also occur earlier in life. In this updated consensus paper on sarcopenia, EWGSOP2: (1) focuses on low muscle strength as a key characteristic of sarcopenia, uses detection of low muscle quantity and quality to confirm the sarcopenia diagnosis, and identifies poor physical performance as indicative of severe sarcopenia; (2) updates the clinical algorithm that can be used for sarcopenia case-finding, diagnosis and confirmation, and severity determination and (3) provides clear cut-off points for measurements of variables that identify and characterise sarcopenia. Conclusions EWGSOP2's updated recommendations aim to increase awareness of sarcopenia and its risk. With these new recommendations, EWGSOP2 calls for healthcare professionals who treat patients at risk for sarcopenia to take actions that will promote early detection and treatment. We also encourage more research in the field of sarcopenia in order to prevent or delay adverse health outcomes that incur a heavy burden for patients and healthcare systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteoporosis in the European Union: medical management, epidemiology and economic burden

            Summary This report describes the epidemiology, burden, and treatment of osteoporosis in the 27 countries of the European Union (EU27). Introduction Osteoporosis is characterized by reduced bone mass and disruption of bone architecture, resulting in increased risk of fragility fractures which represent the main clinical consequence of the disease. Fragility fractures are associated with substantial pain and suffering, disability and even death for affected patients and substantial costs to society. The aim of this report was to characterize the burden of osteoporosis in the EU27 in 2010 and beyond. Methods The literature on fracture incidence and costs of fractures in the EU27 was reviewed and incorporated into a model estimating the clinical and economic burden of osteoporotic fractures in 2010. Results Twenty-two million women and 5.5 million men were estimated to have osteoporosis; and 3.5 million new fragility fractures were sustained, comprising 610,000 hip fractures, 520,000 vertebral fractures, 560,000 forearm fractures and 1,800,000 other fractures (i.e. fractures of the pelvis, rib, humerus, tibia, fibula, clavicle, scapula, sternum and other femoral fractures). The economic burden of incident and prior fragility fractures was estimated at € 37 billion. Incident fractures represented 66 % of this cost, long-term fracture care 29 % and pharmacological prevention 5 %. Previous and incident fractures also accounted for 1,180,000 quality-adjusted life years lost during 2010. The costs are expected to increase by 25 % in 2025. The majority of individuals who have sustained an osteoporosis-related fracture or who are at high risk of fracture are untreated and the number of patients on treatment is declining. Conclusions In spite of the high social and economic cost of osteoporosis, a substantial treatment gap and projected increase of the economic burden driven by the aging populations, the use of pharmacological interventions to prevent fractures has decreased in recent years, suggesting that a change in healthcare policy is warranted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group.

              New evidence shows that older adults need more dietary protein than do younger adults to support good health, promote recovery from illness, and maintain functionality. Older people need to make up for age-related changes in protein metabolism, such as high splanchnic extraction and declining anabolic responses to ingested protein. They also need more protein to offset inflammatory and catabolic conditions associated with chronic and acute diseases that occur commonly with aging. With the goal of developing updated, evidence-based recommendations for optimal protein intake by older people, the European Union Geriatric Medicine Society (EUGMS), in cooperation with other scientific organizations, appointed an international study group to review dietary protein needs with aging (PROT-AGE Study Group). To help older people (>65 years) maintain and regain lean body mass and function, the PROT-AGE study group recommends average daily intake at least in the range of 1.0 to 1.2 g protein per kilogram of body weight per day. Both endurance- and resistance-type exercises are recommended at individualized levels that are safe and tolerated, and higher protein intake (ie, ≥ 1.2 g/kg body weight/d) is advised for those who are exercising and otherwise active. Most older adults who have acute or chronic diseases need even more dietary protein (ie, 1.2-1.5 g/kg body weight/d). Older people with severe kidney disease (ie, estimated GFR <30 mL/min/1.73 m(2)), but who are not on dialysis, are an exception to this rule; these individuals may need to limit protein intake. Protein quality, timing of ingestion, and intake of other nutritional supplements may be relevant, but evidence is not yet sufficient to support specific recommendations. Older people are vulnerable to losses in physical function capacity, and such losses predict loss of independence, falls, and even mortality. Thus, future studies aimed at pinpointing optimal protein intake in specific populations of older people need to include measures of physical function. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Maturitas
                Maturitas
                Elsevier BV
                03785122
                October 2020
                October 2020
                : 140
                : 27-33
                Article
                10.1016/j.maturitas.2020.05.012
                32972632
                892f5f9e-9da6-4238-a576-48068c82a022
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article