20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Global warming has increased the frequency of extreme high temperature events. High temperature is a major abiotic stress that limits the growth and production of plants. Therefore, the plant response to heat stress (HS) has been a focus of research. However, the plant response to HS involves complex physiological traits and molecular or gene networks that are not fully understood. Here, we review recent progress in the physiological (photosynthesis, cell membrane thermostability, oxidative damage, and others), transcriptional, and post-transcriptional (noncoding RNAs) regulation of the plant response to HS. We also summarize advances in understanding of the epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) and epigenetic memory underlying plant–heat interactions. Finally, we discuss the challenges and opportunities of future research in the plant response to HS.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.

          Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Generation and Detection of Reactive Oxygen Species in Photocatalysis.

            The detection methods and generation mechanisms of the intrinsic reactive oxygen species (ROS), i.e., superoxide anion radical (•O2-), hydrogen peroxide (H2O2), singlet oxygen (1O2), and hydroxyl radical (•OH) in photocatalysis, were surveyed comprehensively. Consequently, the major photocatalyst used in heterogeneous photocatalytic systems was found to be TiO2. However, besides TiO2 some representative photocatalysts were also involved in the discussion. Among the various issues we focused on the detection methods and generation reactions of ROS in the aqueous suspensions of photocatalysts. On the careful account of the experimental results presented so far, we proposed the following apprehension: adsorbed •OH could be regarded as trapped holes, which are involved in a rapid adsorption-desorption equilibrium at the TiO2-solution interface. Because the equilibrium shifts to the adsorption side, trapped holes must be actually the dominant oxidation species whereas •OH in solution would exert the reactivity mainly for nonadsorbed reactants. The most probable routes of generating intrinsic ROS at the surfaces of two polymorphs of TiO2, anatase and rutile, were discussed along with some plausible rational reaction processes. In addition to the four major ROS, three ROS, that is organic peroxides, ozone, and nitric oxide, which are less common in photocatalysis are also briefly reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional Regulatory Network of Plant Heat Stress Response.

              Heat stress (HS) is becoming an increasingly significant problem for food security as global warming progresses. Recent studies have elucidated the complex transcriptional regulatory networks involved in HS. Here, we provide an overview of current knowledge regarding the transcriptional regulatory network and post-translational regulation of the transcription factors involved in the HS response. Increasing evidence suggests that epigenetic regulation and small RNAs are important in heat-induced transcriptional responses and stress memory. It remains to be elucidated how plants sense and respond to HS. Several recent reports have discussed the heat sensing and signaling that activate transcriptional cascades; thus, we also highlight future directions of promoting crop tolerance to HS using these factors or other strategies for agricultural applications.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                24 December 2020
                January 2021
                : 22
                : 1
                : 117
                Affiliations
                [1 ]College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; zhaojg@ 123456yzu.edu.cn (J.Z.); d160068@ 123456yzu.edu.cn (Z.L.); liwang@ 123456yzu.edu.cn (L.W.)
                [2 ]Guangling College of Yangzhou University, Yangzhou University, Yangzhou 225009, China
                Author notes
                [* ]Correspondence: bjin@ 123456yzu.edu.cn
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-7330-334X
                Article
                ijms-22-00117
                10.3390/ijms22010117
                7795586
                33374376
                89214aca-f913-448c-afe9-ee13b404a767
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 October 2020
                : 20 November 2020
                Categories
                Review

                Molecular biology
                heat stress,physiological,molecular,non-coding rna,epigenetics
                Molecular biology
                heat stress, physiological, molecular, non-coding rna, epigenetics

                Comments

                Comment on this article